Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran

被引:87
|
作者
Wang, Peipei [1 ]
Zheng, Xinqi [1 ,2 ]
Ai, Gang [1 ]
Liu, Dongya [1 ]
Zhu, Bangren [1 ]
机构
[1] China Univ Geosci, Sch Informat Engn, 29 Xueyuan Rd, Beijing, Peoples R China
[2] MNR China, Technol Innovat Ctr Terr Spatial Big Data, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
Covid-19; LSTM; Rolling update mechanism; Modeling; Forecasting;
D O I
10.1016/j.chaos.2020.110214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The COVID-19 outbreak in late December 2019 is still spreading rapidly in many countries and regions around the world. It is thus urgent to predict the development and spread of the epidemic. In this paper, we have developed a forecasting model of COVID-19 by using a deep learning method with rolling update mechanism based on the epidemical data provided by Johns Hopkins University. First, as traditional epidemical models use the accumulative confirmed cases for training, it can only predict a rising trend of the epidemic and cannot predict when the epidemic will decline or end, an improved model is built based on long short-term memory (LSTM) with daily confirmed cases training set. Second, considering the existing forecasting model based on LSTM can only predict the epidemic trend within the next 30 days accurately, the rolling update mechanism is embedded with LSTM for long-term projections. Third, by introducing Diffusion Index (DI), the effectiveness of preventive measures like social isolation and lockdown on the spread of COVID-19 is analyzed in our novel research. The trends of the epidemic in 150 days ahead are modeled for Russia, Peru and Iran, three countries on different continents. Under our estimation, the current epidemic in Peru is predicted to continue until November 2020. The number of positive cases per day in Iran is expected to fall below 1000 by mid-November, with a gradual downward trend expected after several smaller peaks from July to September, while there will still be more than 2000 increase by early December in Russia. Moreover, our study highlights the importance of preventive measures which have been taken by the government, which shows that the strict controlment can significantly reduce the spread of COVID-19. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Time series forecasting of COVID-19 transmission in Canada using LSTM networks
    Chimmula, Vinay Kumar Reddy
    Zhang, Lei
    CHAOS SOLITONS & FRACTALS, 2020, 135
  • [22] Predicting COVID-19 cases using bidirectional LSTM on multivariate time series
    Said, Ahmed Ben
    Erradi, Abdelkarim
    Aly, Hussein Ahmed
    Mohamed, Abdelmonem
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (40) : 56043 - 56052
  • [23] An Improved Method for the Fitting and Prediction of the Number of COVID-19 Confirmed Cases Based on LSTM
    Yan, Bingjie
    Tang, Xiangyan
    Wang, Jun
    Zhou, Yize
    Zheng, Guopeng
    Zou, Qi
    Lu, Yao
    Liu, Boyi
    Tu, Wenxuan
    Xiong, Neal
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 64 (03): : 1473 - 1490
  • [24] Predicting COVID-19 cases using bidirectional LSTM on multivariate time series
    Ahmed Ben Said
    Abdelkarim Erradi
    Hussein Ahmed Aly
    Abdelmonem Mohamed
    Environmental Science and Pollution Research, 2021, 28 : 56043 - 56052
  • [25] A Covid-19 Epidemiological Analysis and Forecasting Dashboard for Hospitals using Time-Series Analysis and Deep Learning
    Famadico, Nichol John F.
    Solano, Geoffrey A.
    Caoili, Janice C.
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [26] Approach to COVID-19 time series data using deep learning and spectral analysis methods
    Oshinubi, Kayode
    Amakor, Augustina
    Peter, Olumuyiwa James
    Rachdi, Mustapha
    Demongeot, Jacques
    AIMS BIOENGINEERING, 2022, 9 (01): : 1 - 21
  • [27] Prediction of COVID-19 epidemic curve of India using supervised learning approach
    Mongia, Shweta
    Sharma, Sugandha
    Natarajan, Jaisankar
    Kumar, Manoj
    Arora, Vasudha
    Stephan, Thompson
    Shankar, Achyut
    Gupta, Pragya
    Kachhawaha, Raghav
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2021, 66 (3-4) : 433 - 441
  • [28] Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India
    Arora, Parul
    Kumar, Himanshu
    Panigrahi, Bijaya Ketan
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [29] Modeling and control of COVID-19 disease using deep reinforcement learning method
    Ghazizadeh, Nazanin
    Taghvaei, Sajjad
    Haghpanah, Seyyed Arash
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (12) : 3653 - 3670
  • [30] Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study
    Zeroual, Abdelhafid
    Harrou, Fouzi
    Dairi, Abdelkader
    Sun, Ying
    CHAOS SOLITONS & FRACTALS, 2020, 140