Primal-Dual Relationship Between Levenberg-Marquardt and Central Trajectories for Linearly Constrained Convex Optimization

被引:2
作者
Behling, Roger [1 ]
Gonzaga, Clovis [2 ]
Haeser, Gabriel [3 ]
机构
[1] Catolica SC, Jaragua Do Sul, SC, Brazil
[2] Univ Fed Santa Catarina, Florianopolis, SC, Brazil
[3] Univ Fed Sao Paulo, Inst Sci & Technol, Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Central path; Levenberg-Marquardt; Primal-dual; Interior points; Convex quadratic programming; Trust region; Initial point; INTERIOR-POINT METHODS; CENTRAL-PATH; CONVERGENCE; ALGORITHM;
D O I
10.1007/s10957-013-0492-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the minimization of a convex function on a bounded polyhedron (polytope) represented by linear equality constraints and non-negative variables. We define the Levenberg-Marquardt and central trajectories starting at the analytic center using the same parameter, and show that they satisfy a primal-dual relationship, being close to each other for large values of the parameter. Based on this, we develop an algorithm that starts computing primal-dual feasible points on the Levenberg-Marquardt trajectory and eventually moves to the central path. Our main theorem is particularly relevant in quadratic programming, where points on the primal-dual Levenberg-Marquardt trajectory can be calculated by means of a system of linear equations. We present some computational tests related to box constrained trust region subproblems.
引用
收藏
页码:705 / 717
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 1999, NUMERICAL OPTIMIZATI, DOI DOI 10.1007/B98874
[2]   On well definedness of the central path [J].
Drummond, LMG ;
Svaiter, BF .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 102 (02) :223-237
[3]   Examples of ill-behaved central paths in convex optimization [J].
Gilbert, JC ;
Gonzaga, CC ;
Karas, E .
MATHEMATICAL PROGRAMMING, 2005, 103 (01) :63-94
[4]   Interior point methods 25 years later [J].
Gondzio, Jacek .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 218 (03) :587-601
[5]   PATH-FOLLOWING METHODS FOR LINEAR-PROGRAMMING [J].
GONZAGA, CC .
SIAM REVIEW, 1992, 34 (02) :167-224
[6]   Fast convergence of the simplified largest step path following algorithm [J].
Gonzaga, CC ;
Bonnans, JF .
MATHEMATICAL PROGRAMMING, 1997, 76 (01) :95-115
[7]   On central-path proximity measures in interior-point methods [J].
Gonzalez-Lima, MD ;
Roos, C .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 127 (02) :303-328
[8]  
Levenberg K, 1944, Q Appl Math, V2, P164, DOI [10.1090/QAM/10666, 10.1090/qam/10666, DOI 10.1090/QAM/10666, DOI 10.1090/QAM/1944-02-02]
[9]   AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NONLINEAR PARAMETERS [J].
MARQUARDT, DW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1963, 11 (02) :431-441
[10]   ON THE IMPLEMENTATION OF A PRIMAL-DUAL INTERIOR POINT METHOD [J].
Mehrotra, Sanjay .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (04) :575-601