An automated fitting procedure and software for dose-response curves with multiphasic features

被引:144
作者
Di Veroli, Giovanni Y. [1 ]
Fornari, Chiara [1 ]
Goldlust, Ian [1 ,2 ]
Mills, Graham [1 ]
Koh, Siang Boon [1 ]
Bramhall, Jo L. [1 ]
Richards, Frances M. [1 ]
Jodrell, Duncan I. [1 ]
机构
[1] Univ Cambridge, CRUK Cambridge Inst, Cambridge CB2 1TN, England
[2] NIH, Chem Genom Ctr, Bethesda, MD 20892 USA
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
MODEL; TOXICITY; THERAPY; POTENCY;
D O I
10.1038/srep14701
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In cancer pharmacology (and many other areas), most dose-response curves are satisfactorily described by a classical Hill equation (i.e. 4 parameters logistical). Nevertheless, there are instances where the marked presence of more than one point of inflection, or the presence of combined agonist and antagonist effects, prevents straight-forward modelling of the data via a standard Hill equation. Here we propose a modified model and automated fitting procedure to describe dose-response curves with multiphasic features. The resulting general model enables interpreting each phase of the dose-response as an independent dose-dependent process. We developed an algorithm which automatically generates and ranks dose-response models with varying degrees of multiphasic features. The algorithm was implemented in new freely available Dr Fit software (sourceforge. net/projects/drfit/). We show how our approach is successful in describing dose-response curves with multiphasic features. Additionally, we analysed a large cancer cell viability screen involving 11650 dose-response curves. Based on our algorithm, we found that 28% of cases were better described by a multiphasic model than by the Hill model. We thus provide a robust approach to fit dose-response curves with various degrees of complexity, which, together with the provided software implementation, should enable a wide audience to easily process their own data.
引用
收藏
页数:11
相关论文
共 55 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
[Anonymous], J PHARM TOXICOL METH
[3]  
[Anonymous], 2007, BIOL CANC
[4]  
[Anonymous], SYST SOFTW
[5]   Flexible meta-regression functions for modeling aggregate dose-response data, with an application to alcohol and mortality [J].
Bagnardi, V ;
Zambon, A ;
Quatto, P ;
Corrao, G .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2004, 159 (11) :1077-1086
[6]   Cytotoxicity of binary mixtures of human pharmaceuticals in a fish cell line: Approaches for non-monotonic concentration-response relationships [J].
Bain, Peter A. ;
Kumar, Anupama .
CHEMOSPHERE, 2014, 108 :334-342
[7]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[8]   A general approach to modeling biphasic relationships [J].
Beckon, William ;
Parkins, Cary ;
Maximovich, Alexey ;
Beckon, Angela V. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (04) :1308-1314
[9]   The toxicity of poisons applied jointly [J].
Bliss, CI .
ANNALS OF APPLIED BIOLOGY, 1939, 26 (03) :585-615
[10]   AN EQUATION TO DESCRIBE DOSE RESPONSES WHERE THERE IS STIMULATION OF GROWTH AT LOW-DOSES [J].
BRAIN, P ;
COUSENS, R .
WEED RESEARCH, 1989, 29 (02) :93-96