Convergence of intuitionistic fuzzy sets

被引:4
作者
Bashir, Zia [1 ]
Rashid, Tabasam [2 ]
Zafar, Sohail [2 ]
机构
[1] Univ Cent Punjab, Fac IT, Lahore, Pakistan
[2] Univ Management & Technol, Lahore, Pakistan
关键词
Intuitionistic fuzzy sets; Pointwise convergence; Gamma-convergence; Hausdroff metric; Supremum metric; RESPECT;
D O I
10.1016/j.chaos.2015.08.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define pointwise convergence, uniform convergence, Gamma-convergence and convergence in supremum metric for the intuitionistic fuzzy sets. The uniform convergence is in the topology induced by lower and upper pseudo metrics. The Gamma-convergence is the Kuratowski-Painleve convergence of the endographs of the intuitionistic fuzzy sets. The supremum metric is the supremum of Hausdroff distance among the zeta-cuts of the intuitionistic fuzzy sets. We discuss the mutual relationship of these convergences. Topological structures are also discussed in detail. Adequate number of examples are given to illustrate the relationship among these convergences. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:11 / 19
页数:9
相关论文
共 28 条
[1]   A Fuzzy Decision Tree for Processing Satellite Images and Landsat Data [J].
Al-Obeidat, Feras ;
Al-Taani, Ahmad T. ;
Belacel, Nabil ;
Feltrin, Leo ;
Banerjee, Neil .
6TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT-2015), THE 5TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2015), 2015, 52 :1192-1197
[2]   Lacunary Δ-statistical convergence in intuitionistic fuzzy n-normed space [J].
Altundag, Selma ;
Kamber, Esra .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[3]  
Atanassov K.T., 1999, THEORY APPL
[4]   INTUITIONISTIC FUZZY-SETS [J].
ATANASSOV, KT .
FUZZY SETS AND SYSTEMS, 1986, 20 (01) :87-96
[5]  
BEER G, 1989, B UNIONE MAT ITAL, V3B, P41
[6]  
Beer G., 1993, MATH ITS APPL, V268
[7]   Intelligent fuzzy control with imperfect premise matching concept for complex nonlinear multiplicative noised systems [J].
Chang, Wen-Jer ;
Kuo, Che-Pin ;
Ku, Cheung-Chieh .
NEUROCOMPUTING, 2015, 154 :276-283
[9]   On the relationship between some extensions of fuzzy set theory [J].
Deschrijver, G ;
Kerre, EE .
FUZZY SETS AND SYSTEMS, 2003, 133 (02) :227-235
[10]  
DOLECKI S, 1986, OPTIMIZATION, V17, P553