Adaptive fuzzy synchronization for a class of fractional-order neural networks

被引:21
|
作者
Liu, Heng [1 ,2 ]
Li, Sheng-Gang [1 ]
Wang, Hong-Xing [2 ]
Li, Guan-Jun [2 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710119, Peoples R China
[2] Huainan Normal Univ, Dept Appl Math, Huainan 232038, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional-order neural network; adaptive fuzzy control; fractional-order adaptation law; OUTPUT-FEEDBACK CONTROL; MIMO NONLINEAR-SYSTEMS; PROJECTIVE SYNCHRONIZATION; LYAPUNOV FUNCTIONS; UNIFORM STABILITY; CONSENSUS; SCHEME;
D O I
10.1088/1674-1056/26/3/030504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, synchronization for a class of uncertain fractional-order neural networks with external disturbances is discussed by means of adaptive fuzzy control. Fuzzy logic systems, whose inputs are chosen as synchronization errors, are employed to approximate the unknown nonlinear functions. Based on the fractional Lyapunov stability criterion, an adaptive fuzzy synchronization controller is designed, and the stability of the closed-loop system, the convergence of the synchronization error, as well as the boundedness of all signals involved can be guaranteed. To update the fuzzy parameters, fractional-order adaptations laws are proposed. Just like the stability analysis in integer-order systems, a quadratic Lyapunov function is used in this paper. Finally, simulation examples are given to show the effectiveness of the proposed method.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Nonlinear neural networks adaptive control for a class of fractional-order tuberculosis model
    Pang, Na
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (06) : 10464 - 10478
  • [22] Fractional-order cellular neural networks adaptive synchronization control circuit design and simulation
    Zhang X.-H.
    Yu L.-H.
    Kong Zhi Li Lun Yu Ying Yong, 6 (753-762): : 753 - 762
  • [23] Synchronization Analysis of Fractional-Order Neural Networks With Adaptive Intermittent-Active Control
    Han, Xin
    Cheng, Fengna
    Tang, Shan
    Zhang, Yuyan
    Fu, Yao
    Cheng, Weiguo
    Xu, Liang
    IEEE Access, 2022, 10 : 75097 - 75104
  • [24] Output synchronization analysis of coupled fractional-order neural networks with fixed and adaptive couplings
    Peng Liu
    Yunliu Li
    Junwei Sun
    Yanfeng Wang
    Neural Computing and Applications, 2023, 35 : 517 - 528
  • [25] Adaptive synchronization of fractional-order memristor-based neural networks with time delay
    Haibo Bao
    Ju H. Park
    Jinde Cao
    Nonlinear Dynamics, 2015, 82 : 1343 - 1354
  • [26] Adaptive synchronization of fractional-order memristor-based neural networks with time delay
    Bao, Haibo
    Park, Ju H.
    Cao, Jinde
    NONLINEAR DYNAMICS, 2015, 82 (03) : 1343 - 1354
  • [27] Synchronization Analysis of Fractional-Order Neural Networks With Adaptive Intermittent-Active Control
    Han, Xin
    Cheng, Fengna
    Tang, Shan
    Zhang, Yuyan
    Fu, Yao
    Cheng, Weiguo
    Xu, Liang
    IEEE ACCESS, 2022, 10 : 75097 - 75104
  • [28] Output synchronization analysis of coupled fractional-order neural networks with fixed and adaptive couplings
    Liu, Peng
    Li, Yunliu
    Sun, Junwei
    Wang, Yanfeng
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (01): : 517 - 528
  • [29] FUZZY ADAPTIVE FUNCTION PROJECTIVE COMBINATION SYNCHRONIZATION OF A CLASS OF FRACTIONAL-ORDER CHAOTIC AND HYPERCHAOTIC SYSTEMS
    Song, Xiaona
    Song, Shuai
    Tejado Balsera, Ines
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2016, 12 (04): : 1317 - 1332
  • [30] Disturbance rejections and synchronization of fractional-order fuzzy complex networks
    Selvaraj, P.
    Kwon, O. M.
    Lee, S. H.
    Sakthivel, R.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (18): : 10741 - 10764