Ordered valuation algebras: a generic framework for approximating inference

被引:21
作者
Haenni, R [1 ]
机构
[1] Univ Konstanz, Ctr Jnr Res Fellows, D-78457 Constance, Germany
关键词
approximation; anytime algorithms; resource-bounded computation; valuation algebras; local computation; binary join trees; bucket elimination; minibuckets;
D O I
10.1016/j.ijar.2003.10.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper presents a generic approach of approximating inference. The method is based on the concept of valuation algebras with its wide range of possible applications in many different domains. We present convenient resource-bounded anytime algorithms, where the maximal time of computation is determined by the user. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 55 条
[1]  
Almond R.G., 1995, Graphical belief modeling
[2]  
ALMOND RG, 1991, A3 HARV U
[3]  
AMOR NB, 2002, LNCS, V2311, P263
[4]  
[Anonymous], 1992, fuzzy Logic for the Management of Uncertainty
[5]  
[Anonymous], 1999, Probabilistic Networks and Expert Systems
[6]   Approximation algorithms and decision making in the Dempster-Shafer theory of evidence - An empirical study [J].
Bauer, M .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1997, 17 (2-3) :217-237
[7]  
Cano A, 2000, INT J INTELL SYST, V15, P1027, DOI 10.1002/1098-111X(200011)15:11<1027::AID-INT4>3.0.CO
[8]  
2-#
[9]  
Cano A, 1995, LECT NOTES COMPUT SC, V945, P98, DOI 10.1007/BFb0035941
[10]  
Dechter R, 1997, INT JOINT CONF ARTIF, P1297