Size-Dependent Thermopower of Nickel Nanoparticles

被引:0
作者
Singh, Jaiveer [1 ]
Kaurav, N. [2 ]
Okram, Gunadhor S. [3 ]
机构
[1] IPS Acad, ISLE, Dept Phys, Indore 452012, Madhya Pradesh, India
[2] Govt Holkar Sci Coll, Dept Phys, Indore 452017, Madhya Pradesh, India
[3] UGC DAE Consortium Sci Res, Indore 452017, Madhya Pradesh, India
来源
SOLID STATE PHYSICS: PROCEEDINGS OF THE 58TH DAE SOLID STATE PHYSICS SYMPOSIUM 2013, PTS A & B | 2014年 / 1591卷
关键词
Nickel nanoparticles; Thermal decomposition method; thermopower;
D O I
10.1063/1.4872954
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nickel nanoparticles (Ni-NPs) were prepared by thermal decomposition method using Trioctylphosphine (TOP) and Oleylamine (OA). The average particle size (D) estimated from X-ray diffraction (XRD) using Scherrer equation, to be 1-10nm, systematically decreases with increasing concentration of TOP at constant OA concentration. The observed thermopower strongly depends on particle size particularly at low temperatures reaching a very high value of similar to 10(5) mu V/K (at 20 K), and is attributed to the enhanced grain-boundary scattering combined with quantum confinement.
引用
收藏
页码:1348 / 1350
页数:3
相关论文
共 50 条
  • [31] Nickel Nanoparticles: Insights into Sintering Dynamics
    Bajtosova, Lucia
    Kihoulou, Barbora
    Kralik, Rostislav
    Hanus, Jan
    Cieslar, Miroslav
    CRYSTALS, 2024, 14 (04)
  • [32] A new approach to synthesize nickel nanoparticles
    Tao, XJ
    Li, ZW
    Chen, HJ
    Zhang, PY
    Zhang, ZJ
    Wu, ZS
    Dang, HX
    ACTA PHYSICO-CHIMICA SINICA, 2005, 21 (05) : 569 - 572
  • [33] ANTIBACTERIAL PROPERTIES OF NICKEL AND ALUMINUM NANOPARTICLES
    Dovnar, Ruslan I.
    Smotryn, Siarhei M.
    Anufrik, Slavamir S.
    Anuchin, Sergei N.
    Dovnar, Igor S.
    Iaskevich, Nikolai N.
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2024, 68 (01): : 61 - 71
  • [34] Advance on toxicity of metal nickel nanoparticles
    Yongya Wu
    Lu Kong
    Environmental Geochemistry and Health, 2020, 42 : 2277 - 2286
  • [35] Advance on toxicity of metal nickel nanoparticles
    Wu, Yongya
    Kong, Lu
    ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2020, 42 (07) : 2277 - 2286
  • [36] Effect of molecular weight of sodium polyacrylates on the size and morphology of nickel nanoparticles synthesized by the modified polyol method and their magnetic properties
    Logutenko, O. A.
    Titkov, A. I.
    Vorob'yov, A. M.
    Balaev, D. A.
    Shaikhutdinov, K. A.
    Semenov, S. V.
    Yukhin, Y. M.
    Lyakhov, N. Z.
    EUROPEAN POLYMER JOURNAL, 2018, 99 : 102 - 110
  • [37] Formation of nickel nanoparticles and magnetic matrix in nickel phthalocyanine by doping with potassium
    Manukyan, Aram S.
    Avakyan, Leon A.
    Elsukova, Anna E.
    Zubavichus, Yan, V
    Sulyanov, Sergey N.
    Mirzakhanyan, Armen A.
    Kolpacheva, Natalia A.
    Spasova, Marina
    Kocharian, Armen N.
    Farle, Michael
    Bugaev, Lusegen A.
    Sharoyan, Eduard G.
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 214 : 564 - 571
  • [38] Resistivity, thermopower, and thermal conductivity of nickel doped compounds Cr1-xNixSb2 at low temperatures
    Li, Hai Jin
    Qin, Xiao Ying
    Liu, Yi
    Li, Di
    Hu, Jin Lian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (08) : 3677 - 3679
  • [39] Influence of the nickel oxide nanoparticles content on the electrical properties of carbon/nickel nanocomposites
    N. Ben Mansour
    L. El Mir
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 11284 - 11291
  • [40] Interaction of amorphous and crystalline nickel nanoparticles with hydrogen
    Gatin, A. K.
    Grishin, M. V.
    Gurevich, S. A.
    Dokhlikova, N. V.
    Kirsankin, A. A.
    Kozhevin, V. M.
    Lokteva, E. S.
    Rostovshchikova, T. N.
    Sarvadii, S. Yu.
    Shub, B. R.
    Yavsin, D. A.
    RUSSIAN CHEMICAL BULLETIN, 2015, 64 (10) : 2337 - 2343