In Situ Fabrication Of Quasi-Free-Standing Epitaxial Graphene Nanoflakes On Gold

被引:52
作者
Leicht, Philipp [1 ]
Zielke, Lukas [1 ]
Bouvron, Samuel [1 ]
Moroni, Riko [1 ]
Voloshina, Elena [2 ]
Hammerschmidt, Lukas [3 ]
Dedkov, Yuriy S. [4 ]
Fonin, Mikhail [1 ]
机构
[1] Univ Konstanz, Fachbereich Phys, D-78457 Constance, Germany
[2] Humboldt Univ, Inst Chem, D-12489 Berlin, Germany
[3] Free Univ Berlin, Inst Chem & Biochem, D-14195 Berlin, Germany
[4] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
关键词
graphene nanoflakes; graphene; gold; intercalation; scattering; quasiparticle interference; scanning tunneling microscopy; density functional theory; ELECTRONIC-STRUCTURE; EDGE STATES; INTERFERENCE; AU(111);
D O I
10.1021/nn500396c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Addressing the multitude of electronic phenomena theoretically predicted for confined graphene structures requires appropriate in situ fabrication procedures yielding graphene nanoflakes (GNFs) with well-defined geometries and accessible electronic properties. Here, we present a simple strategy to fabricate quasi-free-standing GNFs of variable sizes, performing temperature programmed growth of graphene flakes on the Ir(111) surface and subsequent intercalation of gold. Using scanning tunneling microscopy (STM), we show that epitaxial GNFs on a perfectly ordered Au(111) surface are formed while maintaining an unreconstructed, singly hydrogen-terminated edge structure, as confirmed by the accompanying density functional theory (DFT) calculations. Using tip-induced lateral displacement of GNFs, we demonstrate that GNFs on Au(111) are to a large extent decoupled from the Au(111) substrate. The direct accessibility of the electronic states of a single GNF is demonstrated upon analysis of the quasiparticle interference patterns obtained by low-temperature STM. These findings open up an interesting playground for diverse investigations of graphene nanostructures with possible implications for device fabrication.
引用
收藏
页码:3735 / 3742
页数:8
相关论文
共 55 条
[31]   Yield and Shape Selection of Graphene Nanoislands Grown on Ni(111) [J].
Olle, M. ;
Ceballos, G. ;
Serrate, D. ;
Gambardella, P. .
NANO LETTERS, 2012, 12 (09) :4431-4436
[32]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[33]   The mechanism of caesium intercalation of graphene [J].
Petrovic, M. ;
Rakic, I. Srut ;
Runte, S. ;
Busse, C. ;
Sadowski, J. T. ;
Lazic, P. ;
Pletikosic, I. ;
Pan, Z. -H. ;
Milun, M. ;
Pervan, P. ;
Atodiresei, N. ;
Brako, R. ;
Sokcevic, D. ;
Valla, T. ;
Michely, T. ;
Kralj, M. .
NATURE COMMUNICATIONS, 2013, 4
[34]   Direct Observation of Electron Confinement in Epitaxial Graphene Nanoislands [J].
Phark, Soo-hyon ;
Borme, Jerome ;
Vanegas, Augusto Leon ;
Corbetta, Marco ;
Sander, Dirk ;
Kirschner, Juergen .
ACS NANO, 2011, 5 (10) :8162-8166
[35]   Chaotic dirac billiard in graphene quantum dots [J].
Ponomarenko, L. A. ;
Schedin, F. ;
Katsnelson, M. I. ;
Yang, R. ;
Hill, E. W. ;
Novoselov, K. S. ;
Geim, A. K. .
SCIENCE, 2008, 320 (5874) :356-358
[36]  
Ritter KA, 2009, NAT MATER, V8, P235, DOI [10.1038/NMAT2378, 10.1038/nmat2378]
[37]   Electronic Structure of Atomically Precise Graphene Nanoribbons [J].
Ruffieux, Pascal ;
Cai, Jinming ;
Plumb, Nicholas C. ;
Patthey, Luc ;
Prezzi, Deborah ;
Ferretti, Andrea ;
Molinari, Elisa ;
Feng, Xinliang ;
Muellen, Klaus ;
Pignedoli, Carlo A. ;
Fasel, Roman .
ACS NANO, 2012, 6 (08) :6930-6935
[38]   Scattering and interference in epitaxial graphene [J].
Rutter, G. M. ;
Crain, J. N. ;
Guisinger, N. P. ;
Li, T. ;
First, P. N. ;
Stroscio, J. A. .
SCIENCE, 2007, 317 (5835) :219-222
[39]   Fourier-transform scanning tunnelling spectroscopy: the possibility to obtain constant-energy maps and band dispersion using a local measurement [J].
Simon, L. ;
Bena, C. ;
Vonau, F. ;
Cranney, M. ;
Aubel, D. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (46)
[40]   Half-metallic graphene nanoribbons [J].
Son, Young-Woo ;
Cohen, Marvin L. ;
Louie, Steven G. .
NATURE, 2006, 444 (7117) :347-349