ON SUBPROJECTIVITY OF C(K, X)

被引:0
作者
Gonzalez, Manuel [1 ]
Pello, Javier [2 ]
机构
[1] Univ Cantabria, Fac Ciencias, Dept Matemat, E-39071 Santander, Spain
[2] Univ Rey Juan Carlos, Escuela Super Ciencias Expt & Tecnol, E-28933 Mostoles, Spain
关键词
PERTURBATION CLASSES; OPERATORS;
D O I
10.1090/proc/14481
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Banach space C(K, X) is subprojective if K is scattered and X is subprojective.
引用
收藏
页码:3425 / 3429
页数:5
相关论文
共 14 条
[1]  
Albiac F, 2006, GRAD TEXTS MATH, V233, P1
[2]   Concerning rings of continuous functions [J].
Eidelheit, M .
ANNALS OF MATHEMATICS, 1940, 41 :391-393
[3]  
Elton Lacey H., 1974, GRUND MATH WISS, V208
[4]   On Subprojectivity and Superprojectivity of Banach Spaces [J].
Galego, Eloi M. ;
Gonzalez, Manuel ;
Pello, Javier .
RESULTS IN MATHEMATICS, 2017, 71 (3-4) :1191-1205
[5]   THE SUBPROJECTIVITY OF THE PROJECTIVE TENSOR PRODUCT OF TWO C(K) SPACES WITH |K| = N0 [J].
Galego, Eloi Medina ;
Samuel, Christian .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) :2611-2617
[6]   The perturbation classes problem in Fredholm theory [J].
González, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (01) :65-70
[7]   PERTURBATION CLASSES FOR SEMI-FREDHOLM OPERATORS ON SUBPROJECTIVE AND SUPERPROJECTIVE SPACES [J].
Gonzalez, Manuel ;
Martinez-Abejon, Antonio ;
Salas-Brown, Margot .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) :481-491
[8]  
Lindenstrauss J., 1977, Ergebnisse der Mathematik und Ihrer Grenzgebiete, V92
[9]   SEMI-EMBEDDINGS OF BANACH-SPACES [J].
LOTZ, HP ;
PECK, NT ;
PORTA, H .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1979, 22 (OCT) :233-240
[10]   Subprojective Banach spaces [J].
Oikhberg, T. ;
Spinu, E. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) :613-635