Integral representations and complete monotonicity related to the remainder of Burnside's formula for the gamma function

被引:24
|
作者
Qi, Feng [1 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
Integral representation; Complete monotonicity; Logarithmically completely monotonic function; Remainder; Burnside's formula; Gamma function; APPROXIMATION; PROPERTY;
D O I
10.1016/j.cam.2014.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the authors establish integral representations of some functions related to the remainder of Burnside's formula for the gamma function and find the (logarithmically) complete monotonicity of these and related functions. These results extend and generalize some known conclusions. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:155 / 167
页数:13
相关论文
共 50 条
  • [31] On complete monotonicity for several classes of functions related to ratios of gamma functions
    Qi, Feng
    Agarwal, Ravi P.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [32] Complete monotonicity of a function related to the binomial probability
    Alzer, Horst
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (01) : 10 - 15
  • [33] MONOTONICITY AND SHARP INEQUALITIES RELATED TO GAMMA FUNCTION
    Yang, Zhen-Hang
    Tian, Jingfeng
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (01): : 1 - 22
  • [34] Regularized Integral Representations of the Reciprocal Gamma Function
    Prodanov, Dimiter
    FRACTAL AND FRACTIONAL, 2019, 3 (01) : 1 - 11
  • [35] COMPLETE MONOTONICITY PROPERTIES AND ASYMPTOTIC EXPANSIONS OF THE LOGARITHM OF THE GAMMA FUNCTION
    Chen, Chao-Ping
    Liu, Jing-Yun
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (01): : 379 - 388
  • [36] A generated approximation of the gamma function related to Windschitl's formula
    Lu, Dawei
    Song, Lixin
    Ma, Congxu
    JOURNAL OF NUMBER THEORY, 2014, 140 : 215 - 225
  • [37] Ramanujan’s estimate for the gamma function via monotonicity arguments
    Cristinel Mortici
    The Ramanujan Journal, 2011, 25 : 149 - 154
  • [38] Ramanujan's estimate for the gamma function via monotonicity arguments
    Mortici, Cristinel
    RAMANUJAN JOURNAL, 2011, 25 (02) : 149 - 154
  • [39] MONOTONICITY PROPERTIES RELATED TO SOME GAMMA FUNCTION ESTIMATES
    Mortici, Cristinel
    Dumitrescu, Sorinel
    Hu, Yue
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (01): : 195 - 204
  • [40] A monotonicity property of Euler's gamma function
    Adell, Jose A.
    Alzer, Horst
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (02): : 443 - 448