Magnetic nanoparticles for cancer therapy

被引:81
作者
Duerr, Stephan [1 ]
Janko, Christina [2 ]
Lyer, Stefan [2 ]
Tripal, Philipp [2 ]
Schwarz, Marc [2 ]
Zaloga, Jan [2 ]
Tietze, Rainer [2 ]
Alexiou, Christoph [2 ]
机构
[1] Univ Hosp Erlangen, SEON, Dept Otorhinolaryngol Head & Neck Surg, D-91054 Erlangen, Germany
[2] Univ Hosp Erlangen, SEON, Dept Otorhinolaryngol Head & Neck Surg, D-91054 Erlangen, Germany
关键词
cancer drug resistance; cancer therapy; drug delivery; hyperthermia; magnetic nanoparticles; IRON-OXIDE NANOPARTICLES; DRUG-DELIVERY; IN-VIVO; PROSTATE-CANCER; MULTIDRUG-RESISTANCE; BREAST-CANCER; HYPERTHERMIA; CHEMOTHERAPY; TUMOR; FEASIBILITY;
D O I
10.1515/ntrev-2013-0011
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cancer is one of the biggest challenges facing the medical research in our time. The goals are to improve not only the therapeutic outcome, even in the cases of advanced and metastatic cancer, but also the methods of treatment, which often have considerable adverse effects. In addition, the current developments, such as demographic change, population growth, and increasing healthcare costs, have to be taken into consideration. In all likelihood, nanotechnology and, in particular, the use of magnetic nanoparticles consisting of the elements nickel, cobalt, and iron can make a significant contribution. The greatest potential can be ascribed to the drug delivery systems: magnetic nanoparticles are functionalized by binding them to various substances, including chemotherapeutic agents, radionuclides, nucleic acids, and antibodies. They can then be guided and accumulated using a magnetic field. Hyperthermia can be induced with an alternating magnetic field, providing another therapeutic option. Magnetic nanoparticles may be useful in overcoming cancer drug resistance. They also contribute to realizing a combination of diagnostic investigation and therapy in the field of "theranostics". The multifaceted and promising results of research in the recent years offer the prospect of a real advance in cancer therapy in the near future.
引用
收藏
页码:395 / 409
页数:15
相关论文
共 89 条
[1]   Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma [J].
Agemy, Lilach ;
Friedmann-Morvinski, Dinorah ;
Kotamraju, Venkata Ramana ;
Roth, Lise ;
Sugahara, Kazuki N. ;
Girard, Olivier M. ;
Mattrey, Robert F. ;
Verma, Inder M. ;
Ruoslahti, Erkki .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (42) :17450-17455
[2]   Magnetic Drug Targeting - A new approach in locoregional tumortherapy with chemotherapeutic agents. Experimental animal studies [J].
Alexiou C. ;
Jurgons R. ;
Schmid R. ;
Erhardt W. ;
Parak F. ;
Bergemann C. ;
Iro H. .
HNO, 2005, 53 (7) :618-622
[3]  
Alexiou C, 2010, BUNDESGESUNDHEITSBLA, V53, P839, DOI 10.1007/s00103-010-1097-9
[4]   Magnetic drug targeting - Biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment [J].
Alexiou, C ;
Jurgons, R ;
Schmid, RJ ;
Bergemann, C ;
Henke, J ;
Erhardt, W ;
Huenges, E ;
Parak, F .
JOURNAL OF DRUG TARGETING, 2003, 11 (03) :139-149
[5]  
Alexiou C, 2000, CANCER RES, V60, P6641
[6]   Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting [J].
Alexiou, C ;
Arnold, W ;
Hulin, P ;
Klein, RJ ;
Renz, H ;
Parak, FG ;
Bergemann, C ;
Lübbe, AS .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 225 (1-2) :187-193
[7]   A high field gradient magnet for magnetic drug targeting [J].
Alexiou, Christoph ;
Diehl, Dirk ;
Henninger, Peter ;
Iro, Heinrich ;
Roeckelein, Rudolf ;
Schmidt, Wolfgang ;
Weber, Horst .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2006, 16 (02) :1527-1530
[8]   Chains of Magnetosomes Extracted from AMB-1 Magnetotactic Bacteria for Application in Alternative Magnetic Field Cancer Therapy [J].
Alphandery, Edouard ;
Faure, Stephanie ;
Seksek, Olivier ;
Guyot, Francois ;
Chebbi, Imene .
ACS NANO, 2011, 5 (08) :6279-6296
[9]   Controlled Cell Death by Magnetic Hyperthermia: Effects of Exposure Time, Field Amplitude, and Nanoparticle Concentration [J].
Asin, L. ;
Ibarra, M. R. ;
Tres, A. ;
Goya, G. F. .
PHARMACEUTICAL RESEARCH, 2012, 29 (05) :1319-1327
[10]   A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study [J].
Balivada, Sivasai ;
Rachakatla, Raja Shekar ;
Wang, Hongwang ;
Samarakoon, Thilani N. ;
Dani, Raj Kumar ;
Pyle, Marla ;
Kroh, Franklin O. ;
Walker, Brandon ;
Leaym, Xiaoxuan ;
Koper, Olga B. ;
Tamura, Masaaki ;
Chikan, Viktor ;
Bossmann, Stefan H. ;
Troyer, Deryl L. .
BMC CANCER, 2010, 10