A note on Grayson's theorem

被引:6
作者
Magni, Annibale [1 ]
Mantegazza, Carlo [2 ]
机构
[1] Univ Freiburg, D-79104 Freiburg, Germany
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2014年 / 131卷
关键词
Curve shortening flow; geometric measure theory; MEAN-CURVATURE FLOW; CURVE SHORTENING FLOW; PLANE-CURVES; EQUATION; SINGULARITIES;
D O I
10.4171/RSMUP/131-16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we show a variational proof of Matthew Grayson's convexification theorem for simple closed curves moving by curvature in the plane.
引用
收藏
页码:263 / 279
页数:17
相关论文
共 21 条
[1]  
ABRESCH U, 1986, J DIFFER GEOM, V23, P175
[2]  
ANGENENT S, 1991, J DIFFER GEOM, V33, P601
[4]   THE ZERO-SET OF A SOLUTION OF A PARABOLIC EQUATION [J].
ANGENENT, S .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 390 :79-96
[5]  
[Anonymous], CURVES HOMOTHETICALL
[6]  
[Anonymous], 2011, PROGR MATH
[7]  
[Anonymous], MOTION CURVATURE PLA
[8]  
Aubin T., 1998, Springer Monographs in Mathematics
[9]   INTERIOR ESTIMATES FOR HYPERSURFACES MOVING BY MEAN-CURVATURE [J].
ECKER, K ;
HUISKEN, G .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :547-569
[10]   A STABLE MANIFOLD THEOREM FOR THE CURVE SHORTENING EQUATION [J].
EPSTEIN, CL ;
WEINSTEIN, MI .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (01) :119-139