Electric and Electrochemical Microfluidic Devices for Cell Analysis

被引:38
作者
Hiramoto, Kaoru [1 ]
Ino, Kosuke [2 ]
Nashimoto, Yuji [2 ,3 ]
Ito, Kentaro [1 ]
Shiku, Hitoshi [2 ]
机构
[1] Tohoku Univ, Grad Sch Environm Studies, Sendai, Miyagi, Japan
[2] Tohoku Univ, Grad Sch Engn, Sendai, Miyagi, Japan
[3] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Sendai, Miyagi, Japan
基金
日本学术振兴会;
关键词
electric devices; electrochemical devices; microfluidic devices; cell manipulation; cell analysis; organs-on-a-chip; LSI-BASED DEVICE; ORGANS-ON-CHIPS; AMPEROMETRIC SENSOR; EMBRYOID BODIES; GENE-EXPRESSION; ALKALINE-PHOSPHATASE; ARRAY; ELECTRODEPOSITION; SYSTEM; FABRICATION;
D O I
10.3389/fchem.2019.00396
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Microfluidic devices are widely used for cell analysis, including applications for single-cell analysis, healthcare, environmental monitoring, and organs-on-a-chip that mimic organs inmicrofluidics. Moreover, to enable high-throughput cell analysis, real-time monitoring, and non-invasive cell assays, electric and electrochemical systems have been incorporated into microfluidic devices. In this mini-review, we summarize recent advances in these systems, with applications from single cells to three-dimensional cultured cells and organs-on-a-chip. First, we summarize microfluidic devices combined with dielectrophoresis, electrophoresis, and electrowetting-on-a-dielectric for cell manipulation. Next, we review electric and electrochemical assays of cells to determine chemical section activity, and oxygen and glucose consumption activity, among other applications. In addition, we discuss recent devices designed for the electric and electrochemical collection of cell components from cells. Finally, we highlight the future directions of research in this field and their application prospects.
引用
收藏
页数:9
相关论文
共 94 条
[1]   SINC-seq: correlation of transient gene expressions between nucleus and cytoplasm reflects single-cell physiology [J].
Abdelmoez, Mahmoud N. ;
Iida, Kei ;
Oguchi, Yusuke ;
Nishikii, Hidekazu ;
Yokokawa, Ryuji ;
Kotera, Hidetoshi ;
Uemura, Sotaro ;
Santiago, Juan G. ;
Shintaku, Hirofumi .
GENOME BIOLOGY, 2018, 19
[2]   Electrochemical Imaging for Single-cell Analysis of Cell Adhesion Using a Collagen-coated Large-scale Integration (LSI)-based Amperometric Device [J].
Abe, Hiroya ;
Kanno, Yusuke ;
Ino, Kosuke ;
Inoue, Kumi Y. ;
Suda, Atsushi ;
Kunikata, Ryota ;
Matsudaira, Masahki ;
Shiku, Hitoshi ;
Matsue, Tomokazu .
ELECTROCHEMISTRY, 2016, 84 (05) :364-367
[3]   Electrochemical Imaging of Dopamine Release from Three-Dimensional-Cultured PC12 Cells Using Large-Scale Integration-Based Amperometric Sensors [J].
Abe, Hiroya ;
Ino, Kosuke ;
Li, Chen-Zhong ;
Kanno, Yusuke ;
Inoue, Kumi Y. ;
Suda, Atsushi ;
Kunikata, Ryota ;
Matsudaira, Masahki ;
Takahashi, Yasufumi ;
Shiku, Hitoshi ;
Matsue, Tomokazu .
ANALYTICAL CHEMISTRY, 2015, 87 (12) :6364-6370
[4]   On-Chip Immunoelectrophoresis of Extracellular Vesicles Released from Human Breast Cancer Cells [J].
Akagi, Takanori ;
Kato, Kei ;
Kobayashi, Masashi ;
Kosaka, Nobuyoshi ;
Ochiya, Takahiro ;
Ichiki, Takanori .
PLOS ONE, 2015, 10 (04)
[5]   Review on microfluidic paper-based analytical devices towards commercialisation [J].
Akyazi, Tugce ;
Basabe-Desmonts, Lourdes ;
Benito-Lopez, Fernando .
ANALYTICA CHIMICA ACTA, 2018, 1001 :1-17
[6]   Negative Dielectrophoretic Capture and Repulsion of Single Cells at a Bipolar Electrode: The Impact of Faradaic Ion Enrichment and Depletion [J].
Anand, Robbyn K. ;
Johnson, Eleanor S. ;
Chiu, Daniel T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (02) :776-783
[7]   Observations of Tunable Resistive Pulse Sensing for Exosome Analysis: Improving System Sensitivity and Stability [J].
Anderson, Will ;
Lane, Rebecca ;
Korbie, Darren ;
Trau, Matt .
LANGMUIR, 2015, 31 (23) :6577-6587
[8]   All-inkjet-printed gold microelectrode arrays for extracellular recording of action potentials [J].
Bachmann B. ;
Adly N.Y. ;
Schnitker J. ;
Yakushenko A. ;
Rinklin P. ;
Offenhäusser A. ;
Wolfrum B. .
Flexible and Printed Electronics, 2017, 2 (03)
[9]   Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity [J].
Baret, Jean-Christophe ;
Miller, Oliver J. ;
Taly, Valerie ;
Ryckelynck, Michael ;
El-Harrak, Abdeslam ;
Frenz, Lucas ;
Rick, Christian ;
Samuels, Michael L. ;
Hutchison, J. Brian ;
Agresti, Jeremy J. ;
Link, Darren R. ;
Weitz, David A. ;
Griffiths, Andrew D. .
LAB ON A CHIP, 2009, 9 (13) :1850-1858
[10]   Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction [J].
Bavli, Danny ;
Prill, Sebastian ;
Ezra, Elishai ;
Levy, Gahl ;
Cohen, Merav ;
Vinken, Mathieu ;
Vanfleteren, Jan ;
Jaeger, Magnus ;
Nahmias, Yaakov .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (16) :E2231-E2240