Diffeomorphic Density Matching by Optimal Information Transport

被引:19
作者
Bauer, Martin [1 ]
Joshi, Sarang [2 ]
Modin, Klas [3 ,4 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Univ Utah, Dept Bioengn, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[3] Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
[4] Univ Gothenburg, SE-41296 Gothenburg, Sweden
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2015年 / 8卷 / 03期
关键词
density matching; information geometry; Fisher-Rao metric; optimal transport; image registration; diffeomorphism groups; random sampling; REGISTRATION; EQUATIONS; GEOMETRY;
D O I
10.1137/151006238
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the following problem: given two smooth densities on a manifold, find an optimal diffeomorphism that transforms one density into the other. Our framework builds on connections between the Fisher-Rao information metric on the space of probability densities and right-invariant metrics on the infinite-dimensional manifold of diffeomorphisms. This optimal information transport, and modifications thereof, allow us to construct numerical algorithms for density matching. The algorithms are inherently more efficient than those based on optimal mass transport or diffeomorphic registration. Our methods have applications in medical image registration, texture mapping, image morphing, nonuniform random sampling, and mesh adaptivity. Some of these applications are illustrated in examples.
引用
收藏
页码:1718 / 1751
页数:34
相关论文
共 50 条
  • [41] Optimal transport for visual tracking and registration
    Haker, S
    Tannenbaum, A
    Goldstein, A
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 265 - 269
  • [42] Natural gradient via optimal transport
    Li W.
    Montúfar G.
    Information Geometry, 2018, 1 (2) : 181 - 214
  • [43] Optimal Transport and Generalized Ricci Flow
    Kopfer, Eva
    Streets, Jeffrey
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20
  • [44] OPTIMAL TRANSPORT FROM LEBESGUE TO POISSON
    Huesmann, Martin
    Sturm, Karl-Theodor
    ANNALS OF PROBABILITY, 2013, 41 (04) : 2426 - 2478
  • [45] OPTIMAL TRANSPORT AND THE GAUSS CURVATURE EQUATION
    Guillen, Nestor
    Kitagawa, Jun
    METHODS AND APPLICATIONS OF ANALYSIS, 2020, 27 (04) : 387 - 404
  • [46] Relating Relative Entropy, Optimal Transport and Fisher Information: A Quantum HWI Inequality
    Datta, Nilanjana
    Rouze, Cambyse
    ANNALES HENRI POINCARE, 2020, 21 (07): : 2115 - 2150
  • [47] ASYMPTOTICS FOR SEMIDISCRETE ENTROPIC OPTIMAL TRANSPORT*
    Altschuler, Jason M.
    Niles-Weed, Jonathan
    Stromme, Austin J.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) : 1718 - 1741
  • [48] SCALING LIMITS OF DISCRETE OPTIMAL TRANSPORT
    Gladbach, Peter
    Kopfer, Eva
    Maas, Jan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (03) : 2759 - 2802
  • [49] Optimal transport through a toll station
    Stephanovitch, Arthur
    Dong, Anqi
    Georgiou, Tryphon T.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2024,
  • [50] Optimal Pricing for Optimal Transport
    Bartz, Sedi
    Reich, Simeon
    SET-VALUED AND VARIATIONAL ANALYSIS, 2014, 22 (02) : 467 - 481