Diffeomorphic Density Matching by Optimal Information Transport

被引:19
作者
Bauer, Martin [1 ]
Joshi, Sarang [2 ]
Modin, Klas [3 ,4 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Univ Utah, Dept Bioengn, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[3] Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
[4] Univ Gothenburg, SE-41296 Gothenburg, Sweden
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2015年 / 8卷 / 03期
关键词
density matching; information geometry; Fisher-Rao metric; optimal transport; image registration; diffeomorphism groups; random sampling; REGISTRATION; EQUATIONS; GEOMETRY;
D O I
10.1137/151006238
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the following problem: given two smooth densities on a manifold, find an optimal diffeomorphism that transforms one density into the other. Our framework builds on connections between the Fisher-Rao information metric on the space of probability densities and right-invariant metrics on the infinite-dimensional manifold of diffeomorphisms. This optimal information transport, and modifications thereof, allow us to construct numerical algorithms for density matching. The algorithms are inherently more efficient than those based on optimal mass transport or diffeomorphic registration. Our methods have applications in medical image registration, texture mapping, image morphing, nonuniform random sampling, and mesh adaptivity. Some of these applications are illustrated in examples.
引用
收藏
页码:1718 / 1751
页数:34
相关论文
共 50 条
  • [31] Quantum optimal transport: an invitation
    Trevisan, Dario
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025, 18 (01): : 347 - 360
  • [32] LINEARIZED OPTIMAL TRANSPORT ON MANIFOLDS*
    Sarrazin, Clement
    Schmitzer, Bernhard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (04) : 4970 - 5016
  • [33] Dynamic Optimal Transport on Networks
    Burger, Martin
    Humpert, Ina
    Pietschmann, Jan-Frederik
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [34] Geodesics, Parallel Transport & One-Parameter Subgroups for Diffeomorphic Image Registration
    Lorenzi, Marco
    Pennec, Xavier
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 105 (02) : 111 - 127
  • [35] Diffeomorphic matching with multiscale kernels based on sparse parameterization for cross-view target detection
    Liu, Xiaomin
    Yuan, Donghua
    Xue, Kai
    Li, Jun-Bao
    Zhao, Huaqi
    Liu, Huanyu
    Wang, Tingting
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9689 - 9707
  • [36] Transport Information Hessian Distances
    Li, Wuchen
    GEOMETRIC SCIENCE OF INFORMATION (GSI 2021), 2021, 12829 : 808 - 817
  • [37] Rank Constrained Diffeomorphic Density Motion Estimation for Respiratory Correlated Computed Tomography
    Foote, Markus
    Sabouri, Pouya
    Sawant, Amit
    Joshi, Sarang
    GRAPHS IN BIOMEDICAL IMAGE ANALYSIS, COMPUTATIONAL ANATOMY AND IMAGING GENETICS, 2017, 10551 : 177 - 185
  • [38] Multimodal survival analysis using optimal transport matching and global-local feature fusion
    Sun, Bowen
    Peng, Yanjun
    Ge, Yanglei
    DIGITAL SIGNAL PROCESSING, 2025, 161
  • [39] OPTIMAL TRANSPORT AND LARGE NUMBER OF PARTICLES
    Gangbo, Wilfrid
    Swiech, Andrzej
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (04) : 1397 - 1441
  • [40] Optimal transport between random measures
    Huesmann, Martin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (01): : 196 - 232