Self-normalized asymptotic properties for the parameter estimation in fractional Ornstein-Uhlenbeck process

被引:13
|
作者
Jiang, Hui [1 ]
Liu, Junfeng [2 ]
Wang, Shaochen [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Jiangsu, Peoples R China
[2] Nanjing Audit Univ, Dept Stat, Nanjing 211815, Jiangsu, Peoples R China
[3] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Deviation inequalities; fractional Ornstein-Uhlenbeck process; hypothesis testing; least squares estimator; moderate deviation principle; multiple Wiener-Ito integrals; CENTRAL LIMIT-THEOREMS; SHARP LARGE DEVIATIONS; MODERATE DEVIATIONS; INEQUALITIES; FUNCTIONALS; INTEGRALS; MAXIMUM;
D O I
10.1142/S0219493719500187
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the self-normalized asymptotic properties of the parameter estimators in the fractional Ornstein-Uhlenbeck process. The deviation inequalities, Cramer-type moderate deviations and Berry-Esseen bounds are obtained. The main methods include the deviation inequalities and moderate deviations for multiple Wiener-Ito integrals [P. Major, Tail behavior of multiple integrals and U-statistics, Probab. Surv. 2 (2005) 448-505; On a multivariate version of Bernsteins inequality, Electron. J. Probab. 12 (2007) 966-988; M. Schulte and C. Thale, Cumulants on Wiener chaos: Moderate deviations and the fourth moment theorem, J. Funct. Anal. 270(2016) 2223-2248], as well as the Delta methods in large deviations [F. Q. Gao and X. Q. Zhao, Delta method in large deviations and moderate deviations for estimators, Ann. Statist. 39 (2011) 1211-1240]. For applications, we propose two test statistics which can be used to construct confidence intervals and rejection regions in the hypothesis testing for the drift coefficient. It is shown that the Type II errors tend to be zero exponential when using the proposed test statistics.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Asymptotic properties for the parameter estimation in Ornstein-Uhlenbeck process with discrete observations
    Jiang, Hui
    Liu, Hui
    Zhou, Youzhou
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 3192 - 3229
  • [2] Moderate Deviations for Parameter Estimation in the Fractional Ornstein-Uhlenbeck Processes with Periodic Mean
    Jiang, Hui
    Li, Shi Min
    Wang, Wei Gang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (05) : 1308 - 1324
  • [3] On parameter estimation of fractional Ornstein-Uhlenbeck process
    Farah, Fatima-Ezzahra
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2022, 30 (03) : 161 - 170
  • [4] Moderate Deviations for the Parameter Estimation in the Fractional Ornstein-Uhlenbeck Process with H ∈ (0,1/2)
    Jiang, Hui
    Yang, Qing-shan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024,
  • [5] Parameter estimation for fractional Ornstein-Uhlenbeck processes
    Hu, Yaozhong
    Nualart, David
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (11-12) : 1030 - 1038
  • [6] Drift parameter estimation for infinite-dimensional fractional Ornstein-Uhlenbeck process
    Maslowski, Bohdan
    Tudor, Ciprian A.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (07): : 880 - 901
  • [7] Parameter estimation for the Rosenblatt Ornstein-Uhlenbeck process with periodic mean
    Shevchenko, Radomyra
    Tudor, Ciprian A.
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (01) : 227 - 247
  • [8] Ergodicity and Drift Parameter Estimation for Infinite-Dimensional Fractional Ornstein-Uhlenbeck Process of the Second Kind
    Balde, Maoudo Faramba
    Es-Sebaiy, Khalifa
    Tudor, Ciprian A.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (03) : 785 - 814
  • [9] Parameter Estimation for Ornstein-Uhlenbeck Process with Small Fractional Levy Noises
    Xu, Fang
    Zhao, Yongfei
    Wei, Chao
    ENGINEERING LETTERS, 2022, 30 (04) : 1566 - 1572
  • [10] Parameter estimation for Ornstein-Uhlenbeck processes driven by fractional Levy process
    Shen, Guangjun
    Li, Yunmeng
    Gao, Zhenlong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,