Analysis of an elliptic system with infinitely many solutions

被引:3
作者
Cortazar, Carmen [1 ]
Elgueta, Manuel [1 ]
Garcia-Melian, Jorge [2 ,3 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Dept Matemat, Casilla 306,Correo 22, Santiago, Chile
[2] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
[3] Univ La Laguna, Inst Univ Estudios Avanzados, Inst Univ Estudios Avanzados IUdEA Fis Atom Mol &, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
关键词
Elliptic system; infinitely many solutions; Harnack inequality; BOUNDARY-CONDITION; RESONANT SOLUTIONS; TURNING-POINTS; BIFURCATION; PARAMETER; EQUILIBRIA; EQUATIONS;
D O I
10.1515/anona-2015-0151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the elliptic system Delta u = u(p)v(q), Delta v = u(r)v(s) in Omega with the boundary conditions partial derivative u/partial derivative eta = lambda u, partial derivative v/partial derivative eta = mu v on partial derivative Omega, where Omega is a smooth bounded domain of R-N, p, s > 1, q, r > 0, lambda, mu > 0 and eta stands for the outward unit normal. Assuming the "criticality" hypothesis (p - 1)(s - 1)= qr, we completely analyze the values of lambda, mu for which there exist positive solutions and give a detailed description of the set of solutions.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 18 条
[1]   INFINITE RESONANT SOLUTIONS AND TURNING POINTS IN A PROBLEM WITH UNBOUNDED BIFURCATION [J].
Arrieta, J. M. ;
Pardo, R. ;
Rodriguez-Bernal, A. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (09) :2885-2896
[2]   Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity [J].
Arrieta, Jose M. ;
Pardo, Rosa ;
Rodriguez-Bernal, Anibal .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2007, 137 :225-252
[3]   Equilibria and global dynamics of a problem with bifurcation from infinity [J].
Arrieta, Jose M. ;
Pardo, Rosa ;
Rodriguez-Bernal, Anibal .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (05) :2055-2080
[4]   RESONANT SOLUTIONS AND TURNING POINTS IN AN ELLIPTIC PROBLEM WITH OSCILLATORY BOUNDARY CONDITIONS [J].
Castro, Alfonso ;
Pardo, Rosa .
PACIFIC JOURNAL OF MATHEMATICS, 2012, 257 (01) :75-90
[5]   An elliptic problem with an indefinite nonlinearity and a parameter in the boundary condition [J].
Chabrowski, Jan ;
Tintarev, Cyril .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (04) :519-540
[6]   Study of an elliptic system arising from angiogenesis with chemotaxis and flux at the boundary [J].
Delgado, Manuel ;
Suarez, Antonio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) :3119-3150
[7]   A Bifurcation problem governed by the boundary condition I [J].
Garcia-Melian, Jorge ;
Sabina De Lis, Jose C. ;
Rossi, Julio D. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (5-6) :499-525
[8]   A bifurcation problem governed by the boundary condition II [J].
Garcia-Melian, Jorge ;
Rossi, Julio D. ;
Sabina de Lis, Jose C. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 :1-25
[9]   A CONVEX-CONCAVE ELLIPTIC PROBLEM WITH A PARAMETER ON THE BOUNDARY CONDITION [J].
Garcia-Melian, Jorge ;
Rossi, Julio D. ;
Sabina de Lis, Jose .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (04) :1095-1124
[10]   Limit cases in an elliptic problem with a parameter-dependent boundary condition [J].
Garcia-Melian, Jorge ;
Rossi, Julio D. ;
Sabina de Lis, Jose C. .
ASYMPTOTIC ANALYSIS, 2011, 73 (03) :147-168