Analysis of an elliptic system with infinitely many solutions

被引:3
作者
Cortazar, Carmen [1 ]
Elgueta, Manuel [1 ]
Garcia-Melian, Jorge [2 ,3 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Dept Matemat, Casilla 306,Correo 22, Santiago, Chile
[2] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
[3] Univ La Laguna, Inst Univ Estudios Avanzados, Inst Univ Estudios Avanzados IUdEA Fis Atom Mol &, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
关键词
Elliptic system; infinitely many solutions; Harnack inequality; BOUNDARY-CONDITION; RESONANT SOLUTIONS; TURNING-POINTS; BIFURCATION; PARAMETER; EQUILIBRIA; EQUATIONS;
D O I
10.1515/anona-2015-0151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the elliptic system Delta u = u(p)v(q), Delta v = u(r)v(s) in Omega with the boundary conditions partial derivative u/partial derivative eta = lambda u, partial derivative v/partial derivative eta = mu v on partial derivative Omega, where Omega is a smooth bounded domain of R-N, p, s > 1, q, r > 0, lambda, mu > 0 and eta stands for the outward unit normal. Assuming the "criticality" hypothesis (p - 1)(s - 1)= qr, we completely analyze the values of lambda, mu for which there exist positive solutions and give a detailed description of the set of solutions.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 18 条
  • [1] INFINITE RESONANT SOLUTIONS AND TURNING POINTS IN A PROBLEM WITH UNBOUNDED BIFURCATION
    Arrieta, J. M.
    Pardo, R.
    Rodriguez-Bernal, A.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (09): : 2885 - 2896
  • [2] Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity
    Arrieta, Jose M.
    Pardo, Rosa
    Rodriguez-Bernal, Anibal
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2007, 137 : 225 - 252
  • [3] Equilibria and global dynamics of a problem with bifurcation from infinity
    Arrieta, Jose M.
    Pardo, Rosa
    Rodriguez-Bernal, Anibal
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (05) : 2055 - 2080
  • [4] RESONANT SOLUTIONS AND TURNING POINTS IN AN ELLIPTIC PROBLEM WITH OSCILLATORY BOUNDARY CONDITIONS
    Castro, Alfonso
    Pardo, Rosa
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2012, 257 (01) : 75 - 90
  • [5] An elliptic problem with an indefinite nonlinearity and a parameter in the boundary condition
    Chabrowski, Jan
    Tintarev, Cyril
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (04): : 519 - 540
  • [6] Study of an elliptic system arising from angiogenesis with chemotaxis and flux at the boundary
    Delgado, Manuel
    Suarez, Antonio
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) : 3119 - 3150
  • [7] A Bifurcation problem governed by the boundary condition I
    Garcia-Melian, Jorge
    Sabina De Lis, Jose C.
    Rossi, Julio D.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (5-6): : 499 - 525
  • [8] A bifurcation problem governed by the boundary condition II
    Garcia-Melian, Jorge
    Rossi, Julio D.
    Sabina de Lis, Jose C.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 : 1 - 25
  • [9] A CONVEX-CONCAVE ELLIPTIC PROBLEM WITH A PARAMETER ON THE BOUNDARY CONDITION
    Garcia-Melian, Jorge
    Rossi, Julio D.
    Sabina de Lis, Jose
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (04) : 1095 - 1124
  • [10] Limit cases in an elliptic problem with a parameter-dependent boundary condition
    Garcia-Melian, Jorge
    Rossi, Julio D.
    Sabina de Lis, Jose C.
    [J]. ASYMPTOTIC ANALYSIS, 2011, 73 (03) : 147 - 168