Electron-Only Reconnection in Plasma Turbulence

被引:33
作者
Califano, Francesco [1 ]
Cerri, Silvio Sergio [2 ]
Faganello, Matteo [3 ]
Laveder, Dimitri [4 ]
Sisti, Manuela [1 ,3 ]
Kunz, Matthew W. [2 ,5 ]
机构
[1] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy
[2] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[3] Aix Marseille Univ, CNRS, PIIM UMR 7345, Marseille, France
[4] Univ Cote Azur, Observ Cote Azur, CNRS, Lab JL Lagrange, Nice, France
[5] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
基金
美国国家航空航天局; 欧盟地平线“2020”;
关键词
magnetic fields; magnetic reconnection; plasma turbulence; solar wind; Earth magnetosheath; plasma simulations; MAGNETIC RECONNECTION; COLLISIONLESS RECONNECTION; DIFFUSION REGION;
D O I
10.3389/fphy.2020.00317
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hybrid-Vlasov-Maxwell simulations of magnetized plasma turbulence including non-linear electron-inertia effects in a generalized Ohm's law are presented. When fluctuation energy is injected on scales sufficiently close to ion-kinetic scales, the ions efficiently become de-magnetized and electron-scale current sheets largely dominate the distribution of the emerging current structures, in contrast to the usual picture, where a full hierarchy of structure sizes is generally observed. These current sheets are shown to be the sites of electron-only reconnection (e-rec), in which the usual electron exhausts are unaccompanied by ion outflows and which are in qualitative agreement with those recently observed byMMSin the Earth's turbulent magnetosheath, downstream of the bow shock. Some features of the e-rec phenomenology are shown to be consistent with an electron magnetohydrodynamic description. Simulations suggest that this regime of collisionless reconnection may be found in turbulent systems where plasma processes, such as micro-instabilities and/or shocks, overpower the more customary turbulent cascade by directly injecting energy close to the ion-kinetic scales.
引用
收藏
页数:12
相关论文
共 70 条
  • [41] COMPETITION AMONG NONLINEAR EFFECTS IN TEARING INSTABILITY SATURATION
    MALARA, F
    VELTRI, P
    CARBONE, V
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (10): : 3070 - 3086
  • [42] Disruption of Alfvenic turbulence by magnetic reconnection in a collisionless plasma
    Mallet, Alfred
    Schekochihin, Alexander A.
    Chandran, Benjamin D. G.
    [J]. JOURNAL OF PLASMA PHYSICS, 2017, 83 (06)
  • [43] TRANSITION TO WHISTLER MEDIATED MAGNETIC RECONNECTION
    MANDT, ME
    DENTON, RE
    DRAKE, JF
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1994, 21 (01) : 73 - 76
  • [44] A numerical scheme for the integration of the Vlasov-Maxwell system of equations
    Mangeney, A
    Califano, F
    Cavazzoni, C
    Travnicek, P
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 179 (02) : 495 - 538
  • [45] NON-CANONICAL HAMILTONIAN DENSITY FORMULATION OF HYDRODYNAMICS AND IDEAL MAGNETOHYDRODYNAMICS
    MORRISON, PJ
    GREENE, JM
    [J]. PHYSICAL REVIEW LETTERS, 1980, 45 (10) : 790 - 794
  • [46] In situ detection of collisionless reconnection in the Earth's magnetotail
    Oieroset, M
    Phan, TD
    Fujimoto, M
    Lin, RP
    Lepping, RP
    [J]. NATURE, 2001, 412 (6845) : 414 - 417
  • [47] NONLINEAR COLLISIONLESS MAGNETIC RECONNECTION
    OTTAVIANI, M
    PORCELLI, F
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (23) : 3802 - 3805
  • [48] Can Hall Magnetohydrodynamics Explain Plasma Turbulence at Sub-ion Scales?
    Papini, Emanuele
    Franci, Luca
    Landi, Simone
    Verdini, Andrea
    Matteini, Lorenzo
    Hellinger, Petr
    [J]. ASTROPHYSICAL JOURNAL, 2019, 870 (01)
  • [49] Fluid simulations of plasma turbulence at ion scales: Comparison with Vlasov-Maxwell simulations
    Perrone, D.
    Passot, T.
    Laveder, D.
    Valentini, F.
    Sulem, P. L.
    Zouganelis, I.
    Veltri, P.
    Servidio, S.
    [J]. PHYSICS OF PLASMAS, 2018, 25 (05)
  • [50] VLASOV SIMULATIONS OF MULTI-ION PLASMA TURBULENCE IN THE SOLAR WIND
    Perrone, D.
    Valentini, F.
    Servidio, S.
    Dalena, S.
    Veltri, P.
    [J]. ASTROPHYSICAL JOURNAL, 2013, 762 (02)