Sample size calculation based on exact test for assessing differential expression analysis in RNA-seq data

被引:28
|
作者
Li, Chung-I [1 ,3 ]
Su, Pei-Fang [2 ,3 ]
Shyr, Yu [3 ]
机构
[1] Natl Chiayi Univ, Dept Appl Math, Chiayi, Taiwan
[2] Natl Cheng Kung Univ, Dept Stat, Tainan 70101, Taiwan
[3] Vanderbilt Univ, Ctr Quantitat Sci, Nashville, TN 37235 USA
来源
BMC BIOINFORMATICS | 2013年 / 14卷
关键词
FALSE DISCOVERY RATE; ISOFORM EXPRESSION; MICROARRAY; PACKAGE; DESIGN;
D O I
10.1186/1471-2105-14-357
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Sample size calculation is an important issue in the experimental design of biomedical research. For RNA-seq experiments, the sample size calculation method based on the Poisson model has been proposed; however, when there are biological replicates, RNA-seq data could exhibit variation significantly greater than the mean (i.e. over-dispersion). The Poisson model cannot appropriately model the over-dispersion, and in such cases, the negative binomial model has been used as a natural extension of the Poisson model. Because the field currently lacks a sample size calculation method based on the negative binomial model for assessing differential expression analysis of RNA-seq data, we propose a method to calculate the sample size. Results: We propose a sample size calculation method based on the exact test for assessing differential expression analysis of RNA-seq data. Conclusions: The proposed sample size calculation method is straightforward and not computationally intensive. Simulation studies to evaluate the performance of the proposed sample size method are presented; the results indicate our method works well, with achievement of desired power.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Sample size calculation based on exact test for assessing differential expression analysis in RNA-seq data
    Chung-I Li
    Pei-Fang Su
    Yu Shyr
    BMC Bioinformatics, 14
  • [2] Power analysis and sample size estimation for RNA-Seq differential expression
    Ching, Travers
    Huang, Sijia
    Garmire, Lana X.
    RNA, 2014, 20 (11) : 1684 - 1696
  • [3] Feasibility of sample size calculation for RNA-seq studies
    Poplawski, Alicia
    Binder, Harald
    BRIEFINGS IN BIOINFORMATICS, 2018, 19 (04) : 713 - 720
  • [4] Stability of methods for differential expression analysis of RNA-seq data
    Lin, Bingqing
    Pang, Zhen
    BMC GENOMICS, 2019, 20 (1)
  • [5] A Hypothesis Testing Based Method for Normalization and Differential Expression Analysis of RNA-Seq Data
    Zhou, Yan
    Wang, Guochang
    Zhang, Jun
    Li, Han
    PLOS ONE, 2017, 12 (01):
  • [6] Differential gene expression analysis using coexpression and RNA-Seq data
    Yang, Ei-Wen
    Girke, Thomas
    Jiang, Tao
    BIOINFORMATICS, 2013, 29 (17) : 2153 - 2161
  • [7] A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data
    Zhang, Zong Hong
    Jhaveri, Dhanisha J.
    Marshall, Vikki M.
    Bauer, Denis C.
    Edson, Janette
    Narayanan, Ramesh K.
    Robinson, Gregory J.
    Lundberg, Andreas E.
    Bartlett, Perry F.
    Wray, Naomi R.
    Zhao, Qiong-Yi
    PLOS ONE, 2014, 9 (08):
  • [8] On Differential Gene Expression Using RNA-Seq Data
    Lee, Juhee
    Ji, Yuan
    Liang, Shoudan
    Cai, Guoshuai
    Mueller, Peter
    CANCER INFORMATICS, 2011, 10 : 205 - 215
  • [9] Power analysis for RNA-Seq differential expression studies
    Yu, Lianbo
    Fernandez, Soledad
    Brock, Guy
    BMC BIOINFORMATICS, 2017, 18
  • [10] Differential expression analysis of RNA-seq data at single-base resolution
    Frazee, Alyssa C.
    Sabunciyan, Sarven
    Hansen, Kasper D.
    Irizarry, Rafael A.
    Leek, Jeffrey T.
    BIOSTATISTICS, 2014, 15 (03) : 413 - 426