The linear combination of two polygonal numbers is a perfect square

被引:1
|
作者
Jiang, Mei [1 ]
Li, Yangcheng [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
关键词
Polygonal number; Diophantine equation; Pell equation; Positive integer solution;
D O I
10.7546/nntdm.2020.26.2.105-115
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By the theory of Pell equation and congruence, we study the problem about the linear combination of two polygonal numbers is a perfect square. Let P-k(x) denote the x-th k-gonal number. We show that if k >= 5, 2(k - 2)n is not a perfect square, and there is a positive integer solution (Y', Z') of Y-2 - 2(k - 2)nZ(2) = (k - 4)(2) n(2) - 8(k - 2)n satisfying Y' + (k - 4)n 0 (mod 2(k - 2)n), Z' 0 (mod 2), then the Diophantine equation 1-FnP(k)(y) = z(2) has infinitely many positive integer solutions (y, z). Moreover, we give conditions about in, n such that the Diophantine equation mP(k)(x)+nP(k)(y) = z(2) has infinitely many positive integer solutions (x, y, z).
引用
收藏
页码:105 / 115
页数:11
相关论文
共 50 条
  • [31] A Perfect Square
    Hill, Nanci Milone
    LIBRARY JOURNAL, 2012, 137 (07) : 73 - 73
  • [32] Polygonal polyominoes on the square lattice
    Guttmann, AJ
    Jensen, I
    Owczarek, AL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (18): : 3721 - 3733
  • [33] Perfect Numbers
    Ausubel, Ramona
    PLOUGHSHARES, 2024, 50 (02)
  • [34] PERFECT NUMBERS
    WAGON, S
    MATHEMATICAL INTELLIGENCER, 1985, 7 (02): : 66 - 68
  • [35] Pythagorean triples of polygonal numbers
    Scheffold, E
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (03): : 257 - 258
  • [36] On polygonal fuzzy sets and numbers
    Baez-Sanchez, A. D.
    Moretti, A. C.
    Rojas-Medar, M. A.
    FUZZY SETS AND SYSTEMS, 2012, 209 : 54 - 65
  • [37] On universal sums of polygonal numbers
    SUN Zhi-Wei
    Science China(Mathematics), 2015, 58 (07) : 1367 - 1396
  • [38] On universal sums of polygonal numbers
    Zhi-Wei Sun
    Science China Mathematics, 2015, 58 : 1367 - 1396
  • [39] ON SUMS OF THREE POLYGONAL NUMBERS
    Canadas, Agusin Moreno
    Angarita, Maria Alejandra Osorio
    Avila, William German Salas
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 34 (01): : 65 - 81
  • [40] On Wiener numbers of polygonal nets
    Shiu, WC
    Lam, PCB
    Poon, KK
    DISCRETE APPLIED MATHEMATICS, 2002, 122 (1-3) : 251 - 261