Analysis of a stochastic ratio-dependent predator-prey model driven by Levy noise

被引:17
作者
Bai, Ling [1 ]
Li, Jingshi [1 ]
Zhang, Kai [1 ]
Zhao, Wenju [2 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130061, Peoples R China
[2] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
基金
中国国家自然科学基金;
关键词
Levy noise; Ito formula for Levy process; The strong number law of local martingale; Persistence; POPULATION-DYNAMICS; SYSTEM;
D O I
10.1016/j.amc.2013.12.187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a non-autonomous ratio-dependent predator-prey system driven by Levy noise. Firstly, we show the existence of global positive solution and stochastic boundedness. Secondly, the conditions of persistent in mean and extinction are established and we also give the asymptotic properties of the solution. Finally, we simulate the model to illustrate our main analytical results. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:480 / 493
页数:14
相关论文
共 13 条
  • [1] COUPLING IN PREDATOR PREY DYNAMICS - RATIO-DEPENDENCE
    ARDITI, R
    GINZBURG, LR
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1989, 139 (03) : 311 - 326
  • [2] Stochastic population dynamics driven by Levy noise
    Bao, Jianhai
    Yuan, Chenggui
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (02) : 363 - 375
  • [3] Competitive Lotka-Volterra population dynamics with jumps
    Bao, Jianhai
    Mao, Xuerong
    Yin, Geroge
    Yuan, Chenggui
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6601 - 6616
  • [4] Global analyses in some delayed ratio-dependent predator-prey systems
    Beretta, E
    Kuang, Y
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (03) : 381 - 408
  • [5] Classerman Paul, 2003, MONTE CARLO METHODS
  • [6] Dynamics of a non-autonomous ratio-dependent predator-prey system
    Fan, M
    Wang, Q
    Zou, XF
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 : 97 - 118
  • [7] FREEDMAN HI, 1993, B MATH BIOL, V55, P817, DOI 10.1016/S0092-8240(05)80190-9
  • [8] Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system
    Hsu, SB
    Hwang, TW
    Kuang, Y
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 42 (06) : 489 - 506
  • [9] Qualitative analysis of a stochastic ratio-dependent predator-prey system
    Ji, Chunyan
    Jiang, Daqing
    Li, Xiaoyue
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) : 1326 - 1341
  • [10] A stochastic ratio-dependent predator-prey model under regime switching
    Lv, Jingliang
    Wang, Ke
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,