Deformable 3D Convolution for Video Super-Resolution

被引:111
作者
Ying, Xinyi [1 ]
Wang, Longguang [1 ]
Wang, Yingqian [1 ]
Sheng, Weidong [1 ]
An, Wei [1 ]
Guo, Yulan [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Three-dimensional displays; Motion compensation; Feature extraction; Image resolution; Signal resolution; Solid modeling; Video super-resolution; deformable convolution; ENHANCEMENT;
D O I
10.1109/LSP.2020.3013518
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The spatio-temporal information among video sequences is significant for video super-resolution (SR). However, the spatio-temporal information cannot be fully used by existing video SR methods since spatial feature extraction and temporal motion compensation are usually performed sequentially. In this paper, we propose a deformable 3D convolution network (D3Dnet) to incorporate spatio-temporal information from both spatial and temporal dimensions for video SR. Specifically, we introduce deformable 3D convolution (D3D) to integrate deformable convolution with 3D convolution, obtaining both superior spatio-temporal modeling capability and motion-aware modeling flexibility. Extensive experiments have demonstrated the effectiveness of D3D in exploiting spatio-temporal information. Comparative results show that our network achieves state-of-the-art SR performance. Code is available at: https://github.com/XinyiYing/D3Dnet.
引用
收藏
页码:1500 / 1504
页数:5
相关论文
共 30 条
[1]   Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation [J].
Caballero, Jose ;
Ledig, Christian ;
Aitken, Andrew ;
Acosta, Alejandro ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2848-2857
[2]   Video Super-Resolution Using Generalized Gaussian Markov Random Fields [J].
Chen, Jin ;
Nunez-Yanez, Jose ;
Achim, Alin .
IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (02) :63-66
[3]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[4]   Learning Spatiotemporal Features with 3D Convolutional Networks [J].
Du Tran ;
Bourdev, Lubomir ;
Fergus, Rob ;
Torresani, Lorenzo ;
Paluri, Manohar .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4489-4497
[5]   Multiframe resolution-enhancement methods for compressed video [J].
Gunturk, BK ;
Altunbasak, Y ;
Mersereau, RM .
IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (06) :170-174
[6]   Deep Back-Projection Networks For Super-Resolution [J].
Haris, Muhammad ;
Shakhnarovich, Greg ;
Ukita, Norimichi .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1664-1673
[7]   Video Super-resolution with Temporal Group Attention [J].
Isobe, Takashi ;
Li, Songjiang ;
Jia, Xu ;
Yuan, Shanxin ;
Slabaugh, Gregory ;
Xu, Chunjing ;
Li, Ya-Li ;
Wang, Shengjin ;
Tian, Qi .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :8005-8014
[8]   A Progressively Enhanced Network for Video Satellite Imagery Superresolution [J].
Jiang, Kui ;
Wang, Zhongyuan ;
Yi, Peng ;
Jiang, Junjun .
IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (11) :1630-1634
[9]   Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation [J].
Jo, Younghyun ;
Oh, Seoung Wug ;
Kang, Jaeyeon ;
Kim, Seon Joo .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3224-3232
[10]   Video Super-Resolution With Convolutional Neural Networks [J].
Kappeler, Armin ;
Yoo, Seunghwan ;
Dai, Qiqin ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2016, 2 (02) :109-122