Deformable 3D Convolution for Video Super-Resolution

被引:103
作者
Ying, Xinyi [1 ]
Wang, Longguang [1 ]
Wang, Yingqian [1 ]
Sheng, Weidong [1 ]
An, Wei [1 ]
Guo, Yulan [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Three-dimensional displays; Motion compensation; Feature extraction; Image resolution; Signal resolution; Solid modeling; Video super-resolution; deformable convolution; ENHANCEMENT;
D O I
10.1109/LSP.2020.3013518
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The spatio-temporal information among video sequences is significant for video super-resolution (SR). However, the spatio-temporal information cannot be fully used by existing video SR methods since spatial feature extraction and temporal motion compensation are usually performed sequentially. In this paper, we propose a deformable 3D convolution network (D3Dnet) to incorporate spatio-temporal information from both spatial and temporal dimensions for video SR. Specifically, we introduce deformable 3D convolution (D3D) to integrate deformable convolution with 3D convolution, obtaining both superior spatio-temporal modeling capability and motion-aware modeling flexibility. Extensive experiments have demonstrated the effectiveness of D3D in exploiting spatio-temporal information. Comparative results show that our network achieves state-of-the-art SR performance. Code is available at: https://github.com/XinyiYing/D3Dnet.
引用
收藏
页码:1500 / 1504
页数:5
相关论文
共 30 条
  • [1] Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation
    Caballero, Jose
    Ledig, Christian
    Aitken, Andrew
    Acosta, Alejandro
    Totz, Johannes
    Wang, Zehan
    Shi, Wenzhe
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2848 - 2857
  • [2] Video Super-Resolution Using Generalized Gaussian Markov Random Fields
    Chen, Jin
    Nunez-Yanez, Jose
    Achim, Alin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (02) : 63 - 66
  • [3] Deformable Convolutional Networks
    Dai, Jifeng
    Qi, Haozhi
    Xiong, Yuwen
    Li, Yi
    Zhang, Guodong
    Hu, Han
    Wei, Yichen
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 764 - 773
  • [4] Learning Spatiotemporal Features with 3D Convolutional Networks
    Du Tran
    Bourdev, Lubomir
    Fergus, Rob
    Torresani, Lorenzo
    Paluri, Manohar
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4489 - 4497
  • [5] Multiframe resolution-enhancement methods for compressed video
    Gunturk, BK
    Altunbasak, Y
    Mersereau, RM
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (06) : 170 - 174
  • [6] Deep Back-Projection Networks For Super-Resolution
    Haris, Muhammad
    Shakhnarovich, Greg
    Ukita, Norimichi
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1664 - 1673
  • [7] Isobe Takashi, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P8005, DOI 10.1109/CVPR42600.2020.00803
  • [8] A Progressively Enhanced Network for Video Satellite Imagery Superresolution
    Jiang, Kui
    Wang, Zhongyuan
    Yi, Peng
    Jiang, Junjun
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (11) : 1630 - 1634
  • [9] Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation
    Jo, Younghyun
    Oh, Seoung Wug
    Kang, Jaeyeon
    Kim, Seon Joo
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3224 - 3232
  • [10] Video Super-Resolution With Convolutional Neural Networks
    Kappeler, Armin
    Yoo, Seunghwan
    Dai, Qiqin
    Katsaggelos, Aggelos K.
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2016, 2 (02) : 109 - 122