Row-Strict Quasisymmetric Schur Functions

被引:15
|
作者
Mason, Sarah [1 ]
Remmel, Jeffrey [2 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
quasisymmetric functions; Schur functions; omega transform; OPERATORS; ALGEBRAS;
D O I
10.1007/s00026-013-0216-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions, called the quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions, called the row-strict quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as quasisymmetic Schur functions are generated through fillings of composition diagrams. We describe the relationship between this new basis and other known bases for quasisymmetric functions, as well as its relationship to Schur polynomials. We obtain a refinement of the omega transform operator as a result of these relationships.
引用
收藏
页码:127 / 148
页数:22
相关论文
共 50 条
  • [1] Row-Strict Quasisymmetric Schur Functions
    Sarah Mason
    Jeffrey Remmel
    Annals of Combinatorics, 2014, 18 : 127 - 148
  • [2] Skew row-strict quasisymmetric Schur functions
    Mason, Sarah K.
    Niese, Elizabeth
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) : 763 - 791
  • [3] Skew row-strict quasisymmetric Schur functions
    Sarah K. Mason
    Elizabeth Niese
    Journal of Algebraic Combinatorics, 2015, 42 : 763 - 791
  • [4] Quasisymmetric Schur functions
    Haglund, J.
    Luoto, K.
    Mason, S.
    van Willigenburg, S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (02) : 463 - 490
  • [5] Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions
    Allen, Edward E.
    Hallam, Joshua
    Mason, Sarah K.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 157 : 70 - 108
  • [6] Skew quasisymmetric Schur functions and noncommutative Schur functions
    Bessenrodt, C.
    Luoto, K.
    van Willigenburg, S.
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4492 - 4532
  • [7] Quasisymmetric (k, l)-Hook Schur Functions
    Sarah K. Mason
    Elizabeth Niese
    Annals of Combinatorics, 2018, 22 : 167 - 199
  • [8] Quasisymmetric (k, l)-Hook Schur Functions
    Mason, Sarah K.
    Niese, Elizabeth
    ANNALS OF COMBINATORICS, 2018, 22 (01) : 167 - 199
  • [9] Positive expansions of extended Schur functions in the Young quasisymmetric Schur basis
    Marcum, Chloe'
    Niese, Elizabeth
    INVOLVE, A JOURNAL OF MATHEMATICS, 2024, 17 (02): : 217 - 232
  • [10] A Note on Jing and Li's Type B Quasisymmetric Schur Functions
    Oguz, Ezgi Kantarci
    ANNALS OF COMBINATORICS, 2019, 23 (01) : 159 - 170