A nonconvex ADMM for a class of sparse inverse semidefinite quadratic programming problems

被引:6
作者
Lu, Yue [1 ]
Huang, Ming [2 ]
Zhang, Yi [3 ]
Gu, Jian [4 ]
机构
[1] Tianjin Normal Univ, Sch Math Sci, Tianjin, Peoples R China
[2] Dalian Maritime Univ, Dept Math, Dalian, Peoples R China
[3] East China Univ Sci & Technol, Sch Sci, Dept Math, Shanghai, Peoples R China
[4] Dalian Ocean Univ, Sch Sci, Dalian, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Sparse inverse semidefinite quadratic programming problems; alternating direction method of multiplier; Kurdyka-Lojasiewicz inequality; iteration-complexity; ALTERNATING DIRECTION METHOD; COMBINATORIAL OPTIMIZATION; DESCENT METHODS; CONVERGENCE; MINIMIZATION; ALGORITHMS;
D O I
10.1080/02331934.2019.1576663
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider a class of sparse inverse semidefinite quadratic programming problems, in which a nonconvex alternating direction method of multiplier is investigated. Under mild conditions, we establish convergence results of our algorithm and the corresponding non-ergodic iteration-complexity is also considered under the assumption that the potential function satisfies the famous Kurdyka-Lojasiewicz property. Numerical results show that our algorithm is suitable to solve the given sparse inverse semidefinite quadratic programming problems.
引用
收藏
页码:1075 / 1105
页数:31
相关论文
共 50 条
  • [41] A sequential quadratic penalty method for nonlinear semidefinite programming
    Huang, XX
    Yang, XQ
    Teo, KL
    OPTIMIZATION, 2003, 52 (06) : 715 - 738
  • [42] A semidefinite programming method for integer convex quadratic minimization
    Park, Jaehyun
    Boyd, Stephen
    OPTIMIZATION LETTERS, 2018, 12 (03) : 499 - 518
  • [43] Optimizing ADMM and Over-Relaxed ADMM Parameters for Linear Quadratic Problems
    Song, Jintao
    Lu, Wenqi
    Lei, Yunwen
    Tang, Yuchao
    Pan, Zhenkuan
    Duan, Jinming
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8117 - 8125
  • [44] A Sequential Convex Program Approach to an Inverse Linear Semidefinite Programming Problem
    Wu, Jia
    Zhang, Yi
    Zhang, Liwei
    Lu, Yue
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2016, 33 (04)
  • [45] Convergence of multi-block Bregman ADMM for nonconvex composite problems
    Fenghui Wang
    Wenfei Cao
    Zongben Xu
    Science China Information Sciences, 2018, 61
  • [46] Convergence of multi-block Bregman ADMM for nonconvex composite problems
    Fenghui WANG
    Wenfei CAO
    Zongben XU
    ScienceChina(InformationSciences), 2018, 61 (12) : 53 - 64
  • [47] The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones
    Zhang, Yi
    Zhang, Liwei
    Wu, Yue
    TOP, 2014, 22 (01) : 45 - 79
  • [48] Convergence of Linear Bregman ADMM for Nonconvex and Nonsmooth Problems with Nonseparable Structure
    Chao, Miantao
    Deng, Zhao
    Jian, Jinbao
    COMPLEXITY, 2020, 2020
  • [49] ESTIMATING BOUNDS FOR QUADRATIC ASSIGNMENT PROBLEMS ASSOCIATED WITH HAMMING AND MANHATTAN DISTANCE MATRICES BASED ON SEMIDEFINITE PROGRAMMING
    Mittelmann, Hans
    Peng, Jiming
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) : 3408 - 3426
  • [50] Algorithm 920: SFSDP: A Sparse Version of Full Semidefinite Programming Relaxation for Sensor Network Localization Problems
    Kim, Sunyoung
    Kojima, Masakazu
    Waki, Hayato
    Yamashita, Makato
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2012, 38 (04):