A nonconvex ADMM for a class of sparse inverse semidefinite quadratic programming problems

被引:6
作者
Lu, Yue [1 ]
Huang, Ming [2 ]
Zhang, Yi [3 ]
Gu, Jian [4 ]
机构
[1] Tianjin Normal Univ, Sch Math Sci, Tianjin, Peoples R China
[2] Dalian Maritime Univ, Dept Math, Dalian, Peoples R China
[3] East China Univ Sci & Technol, Sch Sci, Dept Math, Shanghai, Peoples R China
[4] Dalian Ocean Univ, Sch Sci, Dalian, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Sparse inverse semidefinite quadratic programming problems; alternating direction method of multiplier; Kurdyka-Lojasiewicz inequality; iteration-complexity; ALTERNATING DIRECTION METHOD; COMBINATORIAL OPTIMIZATION; DESCENT METHODS; CONVERGENCE; MINIMIZATION; ALGORITHMS;
D O I
10.1080/02331934.2019.1576663
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider a class of sparse inverse semidefinite quadratic programming problems, in which a nonconvex alternating direction method of multiplier is investigated. Under mild conditions, we establish convergence results of our algorithm and the corresponding non-ergodic iteration-complexity is also considered under the assumption that the potential function satisfies the famous Kurdyka-Lojasiewicz property. Numerical results show that our algorithm is suitable to solve the given sparse inverse semidefinite quadratic programming problems.
引用
收藏
页码:1075 / 1105
页数:31
相关论文
共 50 条
  • [21] Convergence of multi-block Bregman ADMM for nonconvex composite problems
    Wang, Fenghui
    Cao, Wenfei
    Xu, Zongben
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (12)
  • [22] A self-concordance property for nonconvex semidefinite programming
    Garces, Rodrigo
    Gomez, Walter
    Jarre, Florian
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2011, 74 (01) : 77 - 92
  • [23] A General Framework for Nonconvex Sparse Mean-CVaR Portfolio Optimization Via ADMM
    Sun, Ke-Xin
    Wu, Zhong-Ming
    Wan, Neng
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024, 12 (04) : 1022 - 1047
  • [24] Positive semidefinite penalty method for quadratically constrained quadratic programming
    Gu, Ran
    Du, Qiang
    Yuan, Ya-xiang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 2488 - 2515
  • [25] A REVISED SEQUENTIAL QUADRATIC SEMIDEFINITE PROGRAMMING METHOD FOR NONLINEAR SEMIDEFINITE OPTIMIZATION
    Okabe, Kosuke
    Yamakawa, Yuya
    Fukuda, Ellen hidemi
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (10) : 7777 - 7794
  • [26] Convex quadratic and semidefinite programming relaxations in scheduling
    Skutella, M
    JOURNAL OF THE ACM, 2001, 48 (02) : 206 - 242
  • [27] Semidefinite Relaxation of Quadratic Optimization Problems
    Luo, Zhi-Quan
    Ma, Wing-Kin
    So, Anthony Man-Cho
    Ye, Yinyu
    Zhang, Shuzhong
    IEEE SIGNAL PROCESSING MAGAZINE, 2010, 27 (03) : 20 - 34
  • [28] GLOBAL COMPLEXITY BOUND OF A PROXIMAL ADMM FOR LINEARLY CONSTRAINED NONSEPARABLE NONCONVEX COMPOSITE PROGRAMMING
    Kong, Weiwei
    Monteiro, Renato D. C.
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (01) : 201 - 224
  • [29] Conic approximation to nonconvex quadratic programming with convex quadratic constraints
    Deng, Zhibin
    Fang, Shu-Cherng
    Jin, Qingwei
    Lu, Cheng
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (03) : 459 - 478
  • [30] A modified sequential quadratic programming method for sparse signal recovery problems
    Alamdari, Mohammad Saeid
    Fatemi, Masoud
    Ghaffari, Aboozar
    SIGNAL PROCESSING, 2023, 207