Surface engineered NiO-Co3O4 nanostructures as high-performance electrocatalysts for oxygen reduction reaction

被引:23
作者
Nayak, Arpan Kumar [1 ]
Han, HyukSu [2 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Phys, Vellore 632014, Tamil Nadu, India
[2] Konkuk Univ, Dept Energy Engn, 120 Neungdong Ro, Seoul 05029, South Korea
基金
新加坡国家研究基金会;
关键词
Electrocatalyst; Oxygen reduction reaction; Transition metal oxide; 1D nanorod; 2D nanosheet; BIFUNCTIONAL CATALYST; HYDROGEN EVOLUTION; METAL OXIDES; GRAPHENE;
D O I
10.1016/j.ceramint.2020.07.002
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of low-cost and high-performance oxygen reduction reaction (ORR) catalysts is important for renewable energy storage and conversion systems, such as fuel cell. Herein, we report a simple and facile surface engineering strategy for nickel and cobalt based (NiO-Co3O4) hybrid as efficient and robust ORR electrocatalyst. The surface nanostructure of NiO-Co3O4 nanohybrids can be easily tuned by controlling the precursor amounts of nickel and cobalt during a wet-chemical synthesis. With an optimal composition, an intriguing surface structure consisted of one dimensional (1D) nanorod with two dimensional (2D) nanosheet can be obtained for NiO-Co3O4 nanohybrids, which significantly boosts ORR electrocatalytic activity as well as stability. A facile charge or mass transfer within 1D and 2D open surface nanostructures is mainly responsible for an excellent catalytic performance of NiO-Co3O4 nanohybrids.
引用
收藏
页码:25351 / 25358
页数:8
相关论文
共 25 条
[1]   Synthesis of La0.6Ca0.4Co0.8Ir0.2O3 perovskite for bi-functional catalysis in an alkaline electrolyte [J].
Chang, Yun-Min ;
Wu, Pu-Wei ;
Wu, Cheng-Yeou ;
Hsieh, Yu-Chi .
JOURNAL OF POWER SOURCES, 2009, 189 (02) :1003-1007
[2]   Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts [J].
Cheng, Fangyi ;
Shen, Jian ;
Peng, Bo ;
Pan, Yuede ;
Tao, Zhanliang ;
Chen, Jun .
NATURE CHEMISTRY, 2011, 3 (01) :79-84
[3]   Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes [J].
Faisal, Firas ;
Stumm, Corinna ;
Bertram, Manon ;
Waidhas, Fabian ;
Lykhach, Yaroslava ;
Cherevko, Serhiy ;
Xiang, Feifei ;
Ammom, Maximilian ;
Vorokhta, Mykhailo ;
Smid, Bretislav ;
Skala, Tomas ;
Tsud, Nataliya ;
Neitzel, Armin ;
Beranova, Klara ;
Prince, Kevin C. ;
Geiger, Simon ;
Kasian, Olga ;
Waehler, Tobias ;
Schuster, Ralf ;
Schneider, M. Alexander ;
Matolin, Vladimir ;
Mayrhofer, Karl J. J. ;
Brummel, Olaf ;
Libuda, Joerg .
NATURE MATERIALS, 2018, 17 (07) :592-+
[4]   Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions [J].
Kim, Nam-In ;
Sa, Young Jin ;
Yoo, Tae Sup ;
Choi, Sung Ryul ;
Afzal, Rana ArsIan ;
Choi, Taekjib ;
Seo, Young-Soo ;
Lee, Kug-Seung ;
Hwang, Jun Yeon ;
Choi, Woo Seok ;
Joo, Sang Hoon ;
Park, Jun-Young .
SCIENCE ADVANCES, 2018, 4 (06)
[5]   Precious Metal-Free Nickel Nitride Catalyst for the Oxygen Reduction Reaction [J].
Kreider, Melissa E. ;
Gallo, Alessandro ;
Back, Seoin ;
Liu, Yunzhi ;
Siahrostami, Samira ;
Nordlund, Dennis ;
Sinclair, Robert ;
Norskov, Jens K. ;
King, Laurie A. ;
Jaramillo, Thomas F. .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (30) :26863-26871
[6]   Morphologically controlled Co3O4 nanodisks as practical bi-functional catalyst for rechargeable zinc-air battery applications [J].
Lee, Dong Un ;
Scott, Jordan ;
Park, Hey Woong ;
Abureden, Salah ;
Choi, Ja-Yeon ;
Chen, Zhongwei .
ELECTROCHEMISTRY COMMUNICATIONS, 2014, 43 :109-112
[7]   Enhancing oxygen reduction performance of oxide-CNT through in-situ generated nanoalloy bridging [J].
Li, Fengjiao ;
Yin, Yu ;
Zhang, Chen ;
Li, Wenjian ;
Maliutina, Kristina ;
Zhang, Qianling ;
Wu, Qixing ;
He, Chuanxin ;
Zhang, Yu ;
Yang, Ming ;
Fan, Liangdong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 263
[8]   The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes [J].
Li, Wei ;
Xiong, Dehua ;
Gao, Xuefei ;
Liu, Lifeng .
CHEMICAL COMMUNICATIONS, 2019, 55 (60) :8744-8763
[9]  
Markovic NM, 2001, FUEL CELLS, V1, P105, DOI 10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO
[10]  
2-9