A SYMMETRY RESULT FOR THE ORNSTEIN-UHLENBECK OPERATOR

被引:11
作者
Cesaroni, Annalisa [1 ]
Novaga, Matteo [2 ]
Valdinoci, Enrico [3 ,4 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[3] Weierstr Inst Angew Anal & Stochast, D-10117 Berlin, Germany
[4] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
Symmetry results; Ornstein-Uhlenbeck operator; geometric Poincare inequalities; CONJECTURE; GIORGI; SPACES;
D O I
10.3934/dcds.2014.34.2451
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1978 E. De Giorgi formulated a conjecture concerning the one-dimensional symmetry of bounded solutions to the elliptic equation Delta u = F' (u), which are monotone in some direction. In this paper we prove the analogous statement for the equation Delta u - < x, del u > u = F' (u), where the Laplacian is replaced by the Ornstein-Uhlenbeck operator. Our theorem holds without any restriction on the dimension of the ambient space, and this allows us to obtain an similar result in infinite dimensions by a limit procedure.
引用
收藏
页码:2451 / 2467
页数:17
相关论文
共 20 条
[11]  
Farina A., 2009, RECENT PROGR REACTIO, P74
[12]  
Farina A, 2008, ANN SCUOLA NORM-SCI, V7, P741
[13]   On a conjecture of De Giorgi and some related problems [J].
Ghoussoub, N ;
Gui, C .
MATHEMATISCHE ANNALEN, 1998, 311 (03) :481-491
[14]   Approximation and relaxation of perimeter in the Wiener space [J].
Goldman, M. ;
Novaga, M. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (04) :525-544
[15]  
Ledoux M., 1996, HIGH DIMENSIONAL PRO, V43, P229
[17]   Regularity of flat level sets in phase transitions [J].
Savin, Ovidiu .
ANNALS OF MATHEMATICS, 2009, 169 (01) :41-78
[18]  
Sternberg P, 1998, J REINE ANGEW MATH, V503, P63
[19]   Connectivity of phase boundaries in strictly convex domains [J].
Sternberg, P ;
Zumbrun, K .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 141 (04) :375-400
[20]   A Bernstein type theorem for self-similar shrinkers [J].
Wang, Lu .
GEOMETRIAE DEDICATA, 2011, 151 (01) :297-303