A SYMMETRY RESULT FOR THE ORNSTEIN-UHLENBECK OPERATOR

被引:11
作者
Cesaroni, Annalisa [1 ]
Novaga, Matteo [2 ]
Valdinoci, Enrico [3 ,4 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[3] Weierstr Inst Angew Anal & Stochast, D-10117 Berlin, Germany
[4] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
Symmetry results; Ornstein-Uhlenbeck operator; geometric Poincare inequalities; CONJECTURE; GIORGI; SPACES;
D O I
10.3934/dcds.2014.34.2451
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1978 E. De Giorgi formulated a conjecture concerning the one-dimensional symmetry of bounded solutions to the elliptic equation Delta u = F' (u), which are monotone in some direction. In this paper we prove the analogous statement for the equation Delta u - < x, del u > u = F' (u), where the Laplacian is replaced by the Ornstein-Uhlenbeck operator. Our theorem holds without any restriction on the dimension of the ambient space, and this allows us to obtain an similar result in infinite dimensions by a limit procedure.
引用
收藏
页码:2451 / 2467
页数:17
相关论文
共 20 条
[1]   On a long-standing conjecture of E.!De Giorgi:: Symmetry in 3D for general nonlinearities and a local minimality property [J].
Alberti, G ;
Ambrosio, L ;
Cabré, X .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :9-33
[2]   Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi [J].
Ambrosio, L ;
Cabré, X .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :725-739
[3]   BV functions in abstract Wiener spaces [J].
Ambrosio, Luigi ;
Miranda, Michele, Jr. ;
Maniglia, Stefania ;
Pallara, Diego .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (03) :785-813
[4]  
[Anonymous], 1998, GAUSSIAN MEASURES
[5]  
Berestycki H., 1997, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), V25, P69
[6]  
De Giorgi E., 1979, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), P131
[7]  
del Pino M, 2010, CONTEMP MATH, V528, P115
[8]   MEAN-CURVATURE EVOLUTION OF ENTIRE GRAPHS [J].
ECKER, K ;
HUISKEN, G .
ANNALS OF MATHEMATICS, 1989, 130 (03) :453-471
[9]   SYMMETRIZATION IN THE GAUSS SPACE [J].
EHRHARD, A .
MATHEMATICA SCANDINAVICA, 1983, 53 (02) :281-301
[10]  
Farina A., 2002, PROPRIETES QUALITATI