RhSe2: A Superior 3D Electrocatalyst with Multiple Active Facets for Hydrogen Evolution Reaction in Both Acid and Alkaline Solutions

被引:224
作者
Zhong, Wenwu [1 ,2 ]
Xiao, Beibei [3 ]
Lin, Zhiping [1 ]
Wang, Zongpeng [1 ]
Huang, Liangai [1 ]
Shen, Shijie [1 ]
Zhang, Qinghua [4 ]
Gu, Lin [4 ]
机构
[1] Taizhou Univ, Sch Pharmaceut & Mat Engn, 1139 Shifu Rd, Taizhou 318000, Peoples R China
[2] Foshan Inst Technol, Sch Mat Sci & Hydrogen Energy, 18 Jiangwanyi Rd, Foshan 528000, Peoples R China
[3] Jiangsu Univ Sci & Technol, Sch Energy & Power Engn, 2 Mengxi Rd, Zhenjiang 212003, Peoples R China
[4] Chinese Acad Sci, Inst Phys, 8 3rd South St, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
crystal facets; hydrogen evolution reaction; RhSe; (2); water splitting; CATALYST; OXIDE;
D O I
10.1002/adma.202007894
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layered 2D materials are a vital class of electrocatalys for the hydrogen evolution reaction (HER), due to their large area, excellent activity, and facile fabrication. Theoretical caculations domenstrate, however, that only the edges of the 2D nanosheets act as active sites, while the much larger basal plane exhibits passive activity. Here, from a distinguishing perspective, RhSe2 is reported as a "3D" electrocatalyst for HER with top-class activity, synthesized by a facile solid-state method. Superior to 2D materials, multiple crystal facets of RhSe2 exhibit near-zero free energy change of hydrogen adsorption (Delta G(H)), which guarantees high performance in most common morphologies. Density functional theory calculations reveal that the low-coordinated Rh atoms act as the active sites in acid, which enables the modified Kubas-mediated pathway, while the Se atoms act as the active sites in an alkaline medium. The overpotentials of HER activity of RhSe2 are measured to be 49.9 and 81.6 mV at 10 mA cm(-2) in acid and alkaline solutions, respectively. This work paves the way to new transition metal chalcogenide catalysts.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Developments and Perspectives in 3d Transition-Metal-Based Electrocatalysts for Neutral and Near-Neutral Water Electrolysis [J].
Anantharaj, Sengeni ;
Aravindan, Vanchiappan .
ADVANCED ENERGY MATERIALS, 2020, 10 (01)
[2]   Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction [J].
Bae, Seo-Yoon ;
Mahmood, Javeed ;
Jeon, In-Yup ;
Baek, Jong-Beom .
NANOSCALE HORIZONS, 2020, 5 (01) :43-56
[3]   Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors [J].
Calle-Vallejo, Federico ;
Tymoczko, Jakub ;
Colic, Viktor ;
Vu, Quang Huy ;
Pohl, Marcus D. ;
Morgenstern, Karina ;
Loffreda, David ;
Sautet, Philippe ;
Schuhmann, Wolfgang ;
Bandarenka, Aliaksandr S. .
SCIENCE, 2015, 350 (6257) :185-189
[4]   Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO2 Hydrogenation to Hydrocarbons [J].
Chen, Guangbo ;
Gao, Rui ;
Zhao, Yufei ;
Li, Zhenhua ;
Waterhouse, Geoffrey I. N. ;
Shi, Run ;
Zhao, Jiaqing ;
Zhang, Mengtao ;
Shang, Lu ;
Sheng, Guiyang ;
Zhang, Xiangping ;
Wen, Xiaodong ;
Wu, Li-Zhu ;
Tung, Chen-Ho ;
Zhang, Tierui .
ADVANCED MATERIALS, 2018, 30 (03)
[5]   Metallic Ni3Mo3N Porous Microrods with Abundant Catalytic Sites as Efficient Electrocatalyst for Large Current Density and Superstability of Hydrogen Evolution Reaction and Water Splitting [J].
Chen, Yuke ;
Yu, Jiayuan ;
Jia, Jin ;
Liu, Fan ;
Zhang, Yunwu ;
Xiong, Guowei ;
Zhang, Ruitong ;
Yang, Ruiqi ;
Sun, Dehui ;
Liu, Hong ;
Zhou, Weijia .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 272
[6]   Recent development of two-dimensional transition metal dichalcogenides and their applications [J].
Choi, Wonbong ;
Choudhary, Nitin ;
Han, Gang Hee ;
Park, Juhong ;
Akinwande, Deji ;
Lee, Young Hee .
MATERIALS TODAY, 2017, 20 (03) :116-130
[7]   Combinatorial Search for High-Activity Hydrogen Catalysts Based on Transition-Metal-Embedded Graphitic Carbons [J].
Choi, Woon Ih ;
Wood, Brandon C. ;
Schwegler, Eric ;
Ogitsu, Tadashi .
ADVANCED ENERGY MATERIALS, 2015, 5 (23)
[8]   Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules [J].
Dinh, Cao-Thang ;
Jain, Ankit ;
de Arquer, F. Pelayo Garcia ;
De Luna, Phil ;
Li, Jun ;
Wang, Ning ;
Zheng, Xueli ;
Cai, Jun ;
Gregory, Benjamin Z. ;
Voznyy, Oleksandr ;
Zhang, Bo ;
Liu, Min ;
Sinton, David ;
Crumlin, Ethan J. ;
Sargent, Edward H. .
NATURE ENERGY, 2019, 4 (02) :107-114
[9]   Ultrathin metal-organic framework array for efficient electrocatalytic water splitting [J].
Duan, Jingjing ;
Chen, Sheng ;
Zhao, Chuan .
NATURE COMMUNICATIONS, 2017, 8
[10]   Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting [J].
Guo, Yanna ;
Park, Teahoon ;
Yi, Jin Woo ;
Henzie, Joel ;
Kim, Jeonghun ;
Wang, Zhongli ;
Jiang, Bo ;
Bando, Yoshio ;
Sugahara, Yoshiyuki ;
Tang, Jing ;
Yamauchi, Yusuke .
ADVANCED MATERIALS, 2019, 31 (17)