Stochastic PLRC-FDTD Method for Modeling Wave Propagation in Unmagnetized Plasma

被引:18
|
作者
Liu, Jiang-Fan [1 ]
Lv, Hao [1 ]
Zhao, Yu-Chen [1 ]
Fang, Yun [1 ]
Xi, Xiao-Li [1 ]
机构
[1] Xian Univ Technol, Xian 710048, Shaanxi, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2018年 / 17卷 / 06期
基金
中国国家自然科学基金;
关键词
Perfectly matched layer (PML); plasma; piecewise linear recursive convolution (PLRC); stochastic finite-difference time domain (S-FDTD); PERFECTLY MATCHED LAYER; LINEAR RECURSIVE CONVOLUTION; MAXWELLS EQUATIONS; BILINEAR TRANSFORM; DISPERSIVE MEDIA; CFS-PML; IMPLEMENTATION;
D O I
10.1109/LAWP.2018.2829888
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A stochastic finite-difference time domain (S-FDTD) combined with the piecewise linear recursive convolution method is applied to model wave propagation in unmagnetized plasma with random plasma frequency. The stretched-coordinate perfectly matched layer implementation of the S-FDTD method is also presented. The accuracy and efficiency of the proposed algorithm are validated by numerical examples.
引用
收藏
页码:1024 / 1028
页数:5
相关论文
共 50 条
  • [21] A higher order FDTD method for EM wave propagation in collision plasmas
    Liu, SB
    Mo, JJ
    Yuan, NC
    WAVE PROPAGATION, SCATTERING AND EMISSION IN COMPLEX MEDIA, 2004, : 454 - 459
  • [22] FDTD modeling of wave propagation in dispersive media by using the Mobius transformation technique
    Pereda, JA
    Vegas, A
    Prieto, A
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2002, 50 (07) : 1689 - 1695
  • [23] FDTD solution of the Maxwell-Boltzmann system for electromagnetic wave propagation in a plasma
    Cerri, Graziano
    Moglie, Franco
    Montesi, Ruggero
    Russo, Paola
    Vecchioni, Eleonora
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (08) : 2584 - 2588
  • [24] Application of the FDTD Method to Analyze the Influence of Brick Complexity on Electromagnetic Wave Propagation
    Choroszucho, Agnieszka
    Szczegielniak, Tomasz
    Kusiak, Dariusz
    ENERGIES, 2024, 17 (20)
  • [25] ADE-Laguerre-FDTD Method for Wave Propagation in General Dispersive Materials
    Chen, Wei-Jun
    Shao, Wei
    Wang, Bing-Zhong
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2013, 23 (05) : 228 - 230
  • [26] An Efficient 3-D FDTD Model of Electromagnetic Wave Propagation in Magnetized Plasma
    Samimi, Alireza
    Simpson, Jamesina J.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (01) : 269 - 279
  • [27] FDTD Modeling of Wave Propagation in Cole-Cole Media With Multiple Relaxation Times
    Rekanos, Ioannis T.
    Papadopoulos, Theseus G.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2010, 9 : 67 - 69
  • [28] An Efficient ADE-CN-FDTD Method for Wave Propagation in General Dispersive Materials
    Chen, Wei-Jun
    Long, Shi-Yu
    Liang, Qi-Wen
    2019 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT 2019), 2019,
  • [29] Plasma Transient Processes and Plane-Wave Formation in Simulations by FDTD Method
    Pavlenko, Ivan V.
    Girka, Igor O.
    Trush, Oleksandr V.
    Melnyk, Daria O.
    Velizhanina, Yelyzaveta S.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (11) : 6957 - 6964
  • [30] FDTD Method for Wave Propagation in Havriliak-Negami Media based on Fractional Derivative Approximation
    Antonopoulos, Christos S.
    Kantartzis, Nikolaos V.
    Rekanos, Ioannis
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,