AN ADDITIVE GLOBAL AND LOCAL GAUSSIAN PROCESS MODEL FOR LARGE DATA SETS
被引:0
|
作者:
Meng, Qun
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Dept Ind & Syst Engn, 1 Engn Dr 2, Singapore 117576, SingaporeNatl Univ Singapore, Dept Ind & Syst Engn, 1 Engn Dr 2, Singapore 117576, Singapore
Meng, Qun
[1
]
Ng, Szu Hui
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Dept Ind & Syst Engn, 1 Engn Dr 2, Singapore 117576, SingaporeNatl Univ Singapore, Dept Ind & Syst Engn, 1 Engn Dr 2, Singapore 117576, Singapore
Ng, Szu Hui
[1
]
机构:
[1] Natl Univ Singapore, Dept Ind & Syst Engn, 1 Engn Dr 2, Singapore 117576, Singapore
来源:
2015 WINTER SIMULATION CONFERENCE (WSC)
|
2015年
关键词:
DESIGN;
D O I:
暂无
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Many computer models of large complex systems are time consuming to experiment on. Even when surrogate models are developed to approximate the computer models, estimating an appropriate surrogate model can still be computationally challenging. In this article, we propose an Additive Global and Local Gaussian Process (AGLGP) model as a flexible surrogate for stochastic computer models. This model attempts to capture the overall global spatial trend and the local trends of the responses separately. The proposed additive structure reduces the computational complexity in model fitting, and allows for more efficient predictions with large data sets. We show that this metamodel form is effective in modelling various complicated stochastic model forms.
机构:
Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USAGeorgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
Vakayil, Akhil
Joseph, V. Roshan
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USAGeorgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
机构:
Dept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USADept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USA
Sung, Chih-Li
Haaland, Benjamin
论文数: 0引用数: 0
h-index: 0
机构:
Dept Populat Hlth Sci, 295 Chipeta Way, Salt Lake City, UT 84108 USADept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USA
Haaland, Benjamin
Hwang, Youngdeok
论文数: 0引用数: 0
h-index: 0
机构:
Paul H Chook Dept Informat Syst & Stat, 55 Lexington Ave,24th St, New York, NY 10010 USADept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USA
Hwang, Youngdeok
Lu, Siyuan
论文数: 0引用数: 0
h-index: 0
机构:
IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USADept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USA