Ultrasensitive Near-Infrared Photodetectors Based on a Graphene-MoTe2-Graphene Vertical van der Waals Heterostructure

被引:184
作者
Zhang, Kun [1 ,2 ]
Fang, Xin [1 ,2 ]
Wang, Yilun [1 ,2 ]
Wan, Yi [1 ,2 ]
Song, Qingjun [1 ,2 ]
Zhai, Wenhao [1 ,2 ]
Li, Yanping [1 ,2 ]
Ran, Guangzhao [1 ,2 ]
Ye, Yu [1 ,2 ,3 ]
Dai, Lun [1 ,2 ,3 ]
机构
[1] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
transition metal dichalcogenides; vdWs heterostructure; MoTe2; near-infrared photodetector; photoresponsivity; MOS2; PHOTOTRANSISTORS; METAL DICHALCOGENIDES; SPECTRAL RESPONSE; HIGH-PERFORMANCE; HIGH-DETECTIVITY; GRAPHENE; OPTOELECTRONICS; HETEROJUNCTION; TRANSITION; MOTE2;
D O I
10.1021/acsami.6b14483
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene and other layered materials, such as transition metal dichalcogenides, have rapidly established themselves as exceptional building blocks for optoelectronic applications because of their unique properties and atomically thin nature. The ability to stack them into van der Waals (vdWs) heterostructures with new functionality has opened a new platform for fundamental research and device applications. Nevertheless, near-infrared (NIR) photodetectors based on layered semiconductors are rarely realized. In this work, we fabricate a graphene-MoTe2-graphene vertical vdWs heterostructure on a SiO2/p(+)-Si substrate by a facile and reliable site-controllable transfer method and apply it for photodetection from the visible to NIR wavelength range. Compared to the layered semiconductor photodetectors reported thus far, the graphene-MoTe2-graphene photodetector has a superior performance, including high photoresponsivity (similar to 110 mA W-1 at 1064 nm and 205 mA W-1 at 473 nm), high external quantum efficiency (EQE; similar to 12.9% at 1064 nm and similar to 53.8% at 473 nm), rapid response and recovery processes (a rise time of 24 mu s and a fall time of 46 mu s under 1064 nm illumination), and free from an external source-drain power supply. We have employed scanning photocurrent microscopy to investigate the photocurrent generation in this heterostructure under various back-gate voltages and found that the two Schottky barriers between the graphenes and MoTe2 play an important role in the photocurrent generation. In addition, the vdWs heterostructure has a uniform photoresponsive area. The photoresponsivity and EQE of the photodetector can be modulated by the back-gate (p(+)-Si) voltage. We compared the responsivities of thin and thick flakes and found that the responsivity had a strong dependence on the thickness. The heterostructure has promising applications in future novel optoelectronic devices, enabling next-generation high-responsivity, high-speed, flexible, and transparent NIR devices.
引用
收藏
页码:5392 / 5398
页数:7
相关论文
共 37 条
[1]  
Baugher BWH, 2014, NAT NANOTECHNOL, V9, P262, DOI [10.1038/NNANO.2014.25, 10.1038/nnano.2014.25]
[2]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[3]   Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films [J].
Britnell, L. ;
Ribeiro, R. M. ;
Eckmann, A. ;
Jalil, R. ;
Belle, B. D. ;
Mishchenko, A. ;
Kim, Y. -J. ;
Gorbachev, R. V. ;
Georgiou, T. ;
Morozov, S. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Casiraghi, C. ;
Castro Neto, A. H. ;
Novoselov, K. S. .
SCIENCE, 2013, 340 (6138) :1311-1314
[4]   Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors [J].
Buscema, Michele ;
Groenendijk, Dirk J. ;
Blanter, Sofya I. ;
Steele, Gary A. ;
van der Zant, Herre S. J. ;
Castellanos-Gomez, Andres .
NANO LETTERS, 2014, 14 (06) :3347-3352
[5]   Environmental Changes in MoTe2 Excitonic Dynamics by Defects-Activated Molecular Interaction [J].
Chen, Bin ;
Sahin, Hasan ;
Suslu, Aslihan ;
Ding, Laura ;
Bertoni, Mariana I. ;
Peeters, F. M. ;
Tongay, Sefaattin .
ACS NANO, 2015, 9 (05) :5326-5332
[6]   Infrared Photodetectors Based on Reduced Graphene Oxide and Graphene Nanoribbons [J].
Chitara, Basant ;
Panchakarla, L. S. ;
Krupanidhi, S. B. ;
Rao, C. N. R. .
ADVANCED MATERIALS, 2011, 23 (45) :5419-+
[7]   Lateral MoS2 p-n Junction Formed by Chemical Doping for Use in High-Performance Optoelectronics [J].
Choi, Min Sup ;
Qu, Deshun ;
Lee, Daeyeong ;
Liu, Xiaochi ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Yoo, Won Jong .
ACS NANO, 2014, 8 (09) :9332-9340
[8]   High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared [J].
Choi, Woong ;
Cho, Mi Yeon ;
Konar, Aniruddha ;
Lee, Jong Hak ;
Cha, Gi-Beom ;
Hong, Soon Cheol ;
Kim, Sangsig ;
Kim, Jeongyong ;
Jena, Debdeep ;
Joo, Jinsoo ;
Kim, Sunkook .
ADVANCED MATERIALS, 2012, 24 (43) :5832-5836
[9]   Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction [J].
Furchi, Marco M. ;
Pospischil, Andreas ;
Libisch, Florian ;
Burgdoerfer, Joachim ;
Mueller, Thomas .
NANO LETTERS, 2014, 14 (08) :4785-4791
[10]   Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions [J].
Gao, Zhiwei ;
Jin, Weifeng ;
Zhou, Yu ;
Dai, Yu ;
Yu, Bin ;
Liu, Chu ;
Xu, Wanjin ;
Li, Yanping ;
Peng, Hailin ;
Liu, Zhongfan ;
Dai, Lun .
NANOSCALE, 2013, 5 (12) :5576-5581