Recent Progress in All-Solid-State Lithium-Sulfur Batteries Using High Li-Ion Conductive Solid Electrolytes

被引:215
|
作者
Umeshbabu, Ediga [1 ]
Zheng, Bizhu [1 ]
Yang, Yong [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surface, Collaborat Innovat Ctr Chem Energy Mat, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
All-solid-state lithium-sulfur batteries; Ionic conductivity; Interfacial impedance; Solid electrolytes; Sulfur-based composites; HIGH-PERFORMANCE; ELECTROCHEMICAL PROPERTIES; COMPOSITE ELECTRODE; CATHODE MATERIALS; POLYMER ELECTROLYTE; SECONDARY BATTERIES; ENERGY DENSITY; HIGH-CAPACITY; THIO-LISICON; METAL ANODE;
D O I
10.1007/s41918-019-00029-3
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Rechargeable lithium-sulfur (Li-S) batteries are one of the most promising next-generation energy storage systems due to their extremely high energy densities and low cost compared with state-of-the-art lithium-ion batteries. However, the main obstacles of conventional Li-S batteries arise from the dissolution of lithium polysulfides in organic liquid electrolytes and corresponding safety issues. To address these issues, an effective approach is to replace conventional liquid electrolytes with solid-state electrolytes. In this review, recent progress in the development of solid electrolytes, including solid polymer electrolytes and inorganic glass/ceramic solid electrolytes, along with corresponding all-solid-state Li-S batteries (ASSLSBs) and related interfacial issues at the electrode/electrolyte interface, will be systematically summarized. In addition, the importance of various solid-state lithium ion conductors in ASSLSBs will be discussed followed by detailed presentations on the development of various forms of sulfur-based positive electrode materials (e.g., elemental sulfur, lithium sulfide, metal sulfides, lithium thiophosphates, and lithium polysulfidophosphates) along with key interfacial challenges at the electrode/solid electrolyte interface (cathode/SE and anode/SE). Finally, this review will provide a brief outlook on the future research of ASSLSBs.Graphical Abstract
引用
收藏
页码:199 / 230
页数:32
相关论文
共 50 条
  • [21] A review of solid electrolytes for safe lithium-sulfur batteries
    Sun, Ying-Zhi
    Huang, Jia-Qi
    Zhao, Chen-Zi
    Zhang, Qiang
    SCIENCE CHINA-CHEMISTRY, 2017, 60 (12) : 1508 - 1526
  • [22] All-solid-state Li-ion batteries with commercially available electrolytes: A feasibility review
    Goetz, Rainer
    Streng, Raphael
    Sterzinger, Johannes
    Steeger, Tim
    Kaye, Matti M.
    Vitort, Maksym
    Bandarenka, Aliaksandr S.
    INFOMAT, 2024, 6 (12)
  • [23] Review on solid electrolytes for all-solid-state lithium-ion batteries
    Zheng, Feng
    Kotobuki, Masashi
    Song, Shufeng
    Lai, Man On
    Lu, Li
    JOURNAL OF POWER SOURCES, 2018, 389 : 198 - 213
  • [24] Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes
    Xu, Ruochen
    Zhang, Shengzhao
    Wang, Xiuli
    Xia, Yan
    Xia, Xinhui
    Wu, Jianbo
    Gu, Changdong
    Tu, Jiangping
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (23) : 6007 - +
  • [25] Recent progress in sulfide-based solid electrolytes for Li-ion batteries
    Liu, D.
    Zhu, W.
    Feng, Z.
    Guerfi, A.
    Vijh, A.
    Zaghib, K.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 213 : 169 - 176
  • [26] Progress and Perspective of Solid-State Lithium-Sulfur Batteries
    Lei, Danni
    Shi, Kai
    Ye, Heng
    Wan, Zipei
    Wang, Yanyan
    Shen, Lu
    Li, Baohua
    Yang, Quan-Hong
    Kang, Feiyu
    He, Yan-Bing
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (38)
  • [27] Solid state lithium-sulfur (Li-S) batteries based on solid electrolytes- a brief review
    Tripathi, Balram
    MATERIALS TODAY-PROCEEDINGS, 2021, 42 : 1689 - 1691
  • [28] Optimisation of conductivity of PEO/PVDF-based solid polymer electrolytes in all-solid-state Li-ion batteries
    Li, Jun
    Zhu, Kongjun
    Wang, Jing
    Yan, Kang
    Liu, Jinsong
    Yao, Zhongran
    Xu, Yuan
    MATERIALS TECHNOLOGY, 2022, 37 (04) : 240 - 247
  • [29] Studies of lithium argyrodite solid electrolytes for all-solid-state batteries
    Rao, R. P.
    Adams, S.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08): : 1804 - 1807
  • [30] All-solid lithium-sulfur batteries: present situation and future progress
    De Luna, Yannis
    Abdullah, Mohanad
    Dimassi, Sarra N.
    Bensalah, Nasr
    IONICS, 2021, 27 (12) : 4937 - 4960