Bergman-Einstein metrics, a generalization of Kerner's theorem and Stein spaces with spherical boundaries

被引:9
|
作者
Huang, Xiaojun [1 ]
Xiao, Ming [2 ]
机构
[1] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
[2] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2021年 / 770卷
关键词
STRICTLY PSEUDOCONVEX DOMAINS; HYPERSURFACES; EXTENSION; MANIFOLDS; MAPPINGS; GEOMETRY;
D O I
10.1515/crelle-2020-0012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an affirmative solution to a conjecture of Cheng proposed in 1979 which asserts that the Bergman metric of a smoothly bounded strongly pseudoconvex domain in C-n, n >= 2, is Kahler-Einstein if and only if the domain is biholomorphic to the ball. We establish a version of the classical Kerner theorem for Stein spaces with isolated singularities which has an immediate application to construct a hyperbolic metric over a Stein space with a spherical boundary.
引用
收藏
页码:183 / 203
页数:21
相关论文
共 3 条
  • [1] On the Classification of Normal Stein Spaces and Finite Ball Quotients With Bergman-Einstein Metrics
    Ebenfelt, Peter
    Xiao, Ming
    Xu, Hang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (19) : 15240 - 15270
  • [2] Bergman-Einstein metric on a Stein spacewith a strongly pseudoconvex boundary
    Huang, Xiaojun
    Li, Xiaoshan
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2023, 31 (07) : 1669 - 1692
  • [3] A generalization of Geraghty's theorem in partially ordered metric spaces and applications to ordinary differential equations
    Gordji, Madjid Eshaghi
    Ramezani, Maryam
    Cho, Yeol Je
    Pirbavafa, Saeideh
    FIXED POINT THEORY AND APPLICATIONS, 2012, : 1 - 9