Complexity of large time behaviour of evolution equations with bounded data

被引:33
作者
Vázquez, JL
Zuazua, E
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Complutense, Dept Matemat Aplicada, E-28049 Madrid, Spain
关键词
asymptotic behaviour; scaling; omega-limit; heat equation; hyperbolic conservation laws;
D O I
10.1142/S0252959902000274
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors study the asymptotic behaviour of solutions of the heat equation and a number of evolution equations using scaling techniques. It is proved that in the framework of bounded data stabilization need not occur and the general asymptotic behaviour is complex. This behaviour reflects for large times, even on compact sets, the complexity of the initial data at infinity.
引用
收藏
页码:293 / 310
页数:18
相关论文
共 35 条
  • [1] [Anonymous], 1988, APPL MATH SCI
  • [2] [Anonymous], LECT NOTES MATH
  • [3] [Anonymous], 1970, MATH USSR SB
  • [4] ARONSON D, 1979, COMMUN PART DIFF EQ, V13, P985
  • [5] BENILAN P, 1972, THESIS ORSAY
  • [6] Conservation laws with continuous flux functions
    Benilan, Philippe
    Kruzkov, Stanislzav
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 3 (04): : 395 - 419
  • [7] Bohr H, 1947, ALMOST PERIODIC FUNC
  • [8] Brezis H., 1983, Analyse Fonctionnelle-Theorie et Applications
  • [9] CHASSEIGNE E, IN PRESS ARCH RAT ME
  • [10] Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws
    Chen, GQ
    Rascle, M
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 153 (03) : 205 - 220