CNN Classification of the Cultural Heritage Images

被引:8
|
作者
Cosovic, Marijana [1 ]
Jankovic, Radmila [2 ]
机构
[1] Univ East Sarajevo, Fac Elect Engn, East Sarajevo, Bosnia & Herceg
[2] Serbian Acad Arts & Sci, Math Inst, Belgrade, Serbia
来源
2020 19TH INTERNATIONAL SYMPOSIUM INFOTEH-JAHORINA (INFOTEH) | 2020年
关键词
cultural heritage; image classification; machine learning; deep neural networks;
D O I
10.1109/infoteh48170.2020.9066300
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The cultural heritage image classification represents one of the most important tasks in the process of digitalization. In this paper, a deep learning neural network was applied in order to classify images of architectural heritage belonging to ten categories, in particular: (i) bell tower, (ii) stained glass, (iii) vault, (iv) column, (v) outer dome, (vi) altar, (vii) apse, (viii) inner dome, (ix) flying buttress, and (x) gargoyle. The Convolutional neural network was used for image classification, with the same architecture applied on two sets of the data: the full dataset consisting of 10 categories as well as dataset with 5 different image categories. The results show that both architectures performed well and obtained accuracy of up to 90%.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Cultural heritage, culture and lighting: a reflection on the use of light in cultural heritage
    Thiago, Elandia Vieira de S.
    Lamas, Nadja de Carvalho
    REVISTA TECNOLOGIA E SOCIEDADE, 2014, 10 (20): : 164 - 175
  • [42] Cultural Heritage, Identity and Cultural Mediation
    Simionescu, Codruta-Diana
    HERMENEIA, 2018, (21):
  • [43] Decolonizing cultural heritage of Indigenous people's knowledge from images in global films
    Semali, Ladislaus M.
    Asino, Tutaleni I.
    DECOLONIZATION-INDIGENEITY EDUCATION & SOCIETY, 2013, 2 (02): : 25 - 56
  • [44] Maritime targets classification based on CNN using Gaofen-3 SAR images
    Ma, Mengyuan
    Zhang, Haojie
    Sun, Xiaokun
    Chen, Jie
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7843 - 7846
  • [45] A Transfer Learning based CNN approach for Classification of Horticulture plantations using Hyperspectral Images
    Natrajan, Priyanka
    Rajmohan, Smruthi
    Sundaram, Sreenidhi
    Natarajan, S.
    Hebbar, R.
    PROCEEDINGS OF THE 2018 IEEE 8TH INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC 2018), 2018, : 279 - 283
  • [46] OctNET: A Lightweight CNN for Retinal Disease Classification from Optical Coherence Tomography Images
    Sunija, A. P.
    Kar, Saikat
    Gayathri, S.
    Gopi, Varun P.
    Palanisamy, P.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 200
  • [47] Multimodal metadata assignment for cultural heritage artifacts
    Luis Rei
    Dunja Mladenic
    Mareike Dorozynski
    Franz Rottensteiner
    Thomas Schleider
    Raphaël Troncy
    Jorge Sebastián Lozano
    Mar Gaitán Salvatella
    Multimedia Systems, 2023, 29 : 847 - 869
  • [48] INNOVATIVE SOLUTIONS FOR THE FRUITION OF CULTURAL HERITAGE: VALUE
    Lopes, Antonino
    Aiello, Angelo
    Falzone, Luca
    Massa, Viola
    ARCHEOMATICA-TECNOLOGIE PER I BENI CULTURALI, 2023, 14 (03): : 26 - 30
  • [49] Multimodal metadata assignment for cultural heritage artifacts
    Rei, Luis
    Mladenic, Dunja
    Dorozynski, Mareike
    Rottensteiner, Franz
    Schleider, Thomas
    Troncy, Raphael
    Sebastian Lozano, Jorge
    Gaitan Salvatella, Mar
    MULTIMEDIA SYSTEMS, 2023, 29 (02) : 847 - 869
  • [50] Rethorics through Images. New strategies to communicate, valorise and share the Cultural Heritage
    Cirafici, Alessandra
    Amoretti, Valeria
    Di Fratta, Valeria
    Di Natale, Iolanda
    Lallone, Daniela
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON VIRTUAL SYSTEMS AND MULTIMEDIA (VSMM), 2014, : 60 - 65