Inconsistencies in four-dimensional Einstein-Gauss-Bonnet gravity

被引:72
作者
Arrechea, Julio [1 ]
Delhom, Adria [2 ,3 ]
Jimenez-Cano, Alejandro [4 ,5 ]
机构
[1] CSIC, Inst Astrofis Andalucia, Granada, Spain
[2] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Valencia 46100, Spain
[3] Univ Valencia, CSIC, Ctr Mixto, IFIC, Valencia 46100, Spain
[4] Univ Granada, Dept Fis Teor & Cosmos, Granada 18071, Spain
[5] Univ Granada, CAFPE, Granada 18071, Spain
基金
欧盟地平线“2020”;
关键词
alternative theories of gravity; singularities; Einstein-Gauss-Bonnet;
D O I
10.1088/1674-1137/abc1d4
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We attempt to clarify several aspects concerning the recently presented four-dimensional Einstein-Gauss-Bonnet gravity. We argue that the limiting procedure outlined in [Phys. Rev. Lett. 124, 081301 (2020)] generally involves ill-defined terms in the four dimensional field equations. Potential ways to circumvent this issue are discussed, alongside remarks regarding specific solutions of the theory. We prove that, although linear perturbations are well behaved around maximally symmetric backgrounds, the equations for second-order perturbations are ill-defined even around a Minkowskian background. Additionally, we perform a detailed analysis of the spherically symmetric solutions and find that the central curvature singularity can be reached within a finite proper time.
引用
收藏
页数:8
相关论文
共 29 条
[1]  
Ai W., 2020, ARXIV200402858GRQC
[2]  
Bonifacio J., 2020, ARXIV200410716HEPTH
[3]   STRING-GENERATED GRAVITY MODELS [J].
BOULWARE, DG ;
DESER, S .
PHYSICAL REVIEW LETTERS, 1985, 55 (24) :2656-2660
[4]   CAN GRAVITATION HAVE A FINITE-RANGE [J].
BOULWARE, DG ;
DESER, S .
PHYSICAL REVIEW D, 1972, 6 (12) :3368-3382
[5]  
Clifton T., 2020, ARXIV200408362GRQC
[6]   Massive Gravity [J].
de Rham, Claudia .
LIVING REVIEWS IN RELATIVITY, 2014, 17
[7]   Einstein-Gauss-Bonnet Gravity in Four-Dimensional Spacetime [J].
Glavan, Drazen ;
Lin, Chunshan .
PHYSICAL REVIEW LETTERS, 2020, 124 (08)
[8]  
Gurses M., 2020, ARXIV200403390GRQC
[9]   Theoretical aspects of massive gravity [J].
Hinterbichler, Kurt .
REVIEWS OF MODERN PHYSICS, 2012, 84 (02) :671-710
[10]   Cosmology for quadratic gravity in generalized Weyl geometry [J].
Jimenez, Jose Beltran ;
Heisenberg, Lavinia ;
Koivisto, Tomi S. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (04)