W2,p-estimates for the linearized Monge-Ampere equation

被引:10
|
作者
Gutierrez, Cristian E. [1 ]
Tournier, Federico
机构
[1] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
a priori estimates of second derivatives; cross sections of solutions; viscosity solutions; nonuniformly elliptic equations;
D O I
10.1090/S0002-9947-06-04189-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of R-n be a strictly convex domain and let phi epsilon C-2 (Omega) be a convex function such that lambda <= detD(2)phi <= Lambda in Omega. The linearized Monge-Ampere equation is L(Phi)u = trace(Phi D(2)u) = f, where Phi = (detD(2)phi) (D-2 phi)(-1) is the matrix of cofactors of D-2 phi. We prove that there exist p > 0 and C > 0 depending only on n, lambda, Lambda, and dist(Omega', Omega) such that vertical bar vertical bar D(2)u vertical bar vertical bar(Lp)(Omega') <= C(vertical bar vertical bar u vertical bar vertical bar(L infinity(Omega)) + vertical bar vertical bar f vertical bar vertical bar(Ln(Omega))) for all solutions u is an element of C-2(Omega) to the equation L(Phi)u = f.
引用
收藏
页码:4843 / 4872
页数:30
相关论文
共 34 条