Asymptotic for a second-order evolution equation with convex potential and vanishing damping term

被引:59
作者
May, Ramzi [1 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, Al Ahsaa, Saudi Arabia
关键词
Dynamical systems; asymptotically small dissipation; asymptotic behavior; energy function; convex function; convex optimization;
D O I
10.3906/mat-1512-28
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this short note, we recover by a different method the new result due to Attouch, Chbani, Peyrouqet, and Redont concerning the weak convergence as t -> +infinity of solutions x(t) to the second-order differential equation x" (t) + k/t x' (t) + del Phi(x(t)) = 0, where K > 3 and Phi is a smooth convex function defined on a Hilbert space H. Moreover, we improve their result on the rate of convergence of Phi(x(t)) min Phi.
引用
收藏
页码:681 / 685
页数:5
相关论文
共 5 条
[1]   Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity [J].
Attouch, Hedy ;
Chbani, Zaki ;
Peypouquet, Juan ;
Redont, Patrick .
MATHEMATICAL PROGRAMMING, 2018, 168 (1-2) :123-175
[2]   Asymptotics for some semilinear hyperbolic equations with non-autonomous damping [J].
Cabot, A. ;
Frankel, P. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) :294-322
[5]  
Su W, 2014, NEUR INF P SYST NIPS