A Survey on IoT Security: Application Areas, Security Threats, and Solution Architectures

被引:647
作者
Hassija, Vikas [1 ]
Chamola, Vinay [2 ]
Saxena, Vikas [1 ]
Jain, Divyansh [1 ]
Goyal, Pranav [1 ]
Sikdar, Biplab [3 ]
机构
[1] Jaypee Inst Informat Technol, Dept CSE&IT, Noida 201309, India
[2] BITS, Dept EEE, Pilani 333031, Rajasthan, India
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
基金
新加坡国家研究基金会;
关键词
Internet of Things (IoT); IoT security; blockchain; fog computing; edge computing; machine learning; IoT applications; distributed systems; COMPUTING PARADIGM; AGGREGATION SCHEME; INTERNET; PRIVACY; BLOCKCHAIN; EDGE; CLOUD; THINGS; MANAGEMENT; AUTHENTICATION;
D O I
10.1109/ACCESS.2019.2924045
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Internet of Things (IoT) is the next era of communication. Using the IoT, physical objects can be empowered to create, receive, and exchange data in a seamless manner. Various IoT applications focus on automating different tasks and are trying to empower the inanimate physical objects to act without any human intervention. The existing and upcoming IoT applications are highly promising to increase the level of comfort, efficiency, and automation for the users. To be able to implement such a world in an evergrowing fashion requires high security, privacy, authentication, and recovery from attacks. In this regard, it is imperative to make the required changes in the architecture of the IoT applications for achieving end-to-end secure IoT environments. In this paper, a detailed review of the security-related challenges and sources of threat in the IoT applications is presented. After discussing the security issues, various emerging and existing technologies focused on achieving a high degree of trust in the IoT applications are discussed. Four different technologies, blockchain, fog computing, edge computing, and machine learning, to increase the level of security in IoT are discussed.
引用
收藏
页码:82721 / 82743
页数:23
相关论文
共 184 条
  • [1] Deep Learning with Differential Privacy
    Abadi, Martin
    Chu, Andy
    Goodfellow, Ian
    McMahan, H. Brendan
    Mironov, Ilya
    Talwar, Kunal
    Zhang, Li
    [J]. CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, : 308 - 318
  • [2] Mobile Edge Computing: A Survey
    Abbas, Nasir
    Zhang, Yan
    Taherkordi, Amir
    Skeie, Tor
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (01): : 450 - 465
  • [3] Abdul-Ghani HA, 2018, INT J ADV COMPUT SC, V9, P355
  • [4] Agrawal M., 2012, International Journal on Computer Science and Engineering, V4, P877
  • [5] Energy Management-as-a-Service Over Fog Computing Platform
    Al Faruque, Mohammad Abdullah
    Vatanparvar, Korosh
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2016, 3 (02): : 161 - 169
  • [6] Alias NA, 2016, 2016 FIFTH ICT INTERNATIONAL STUDENT PROJECT CONFERENCE (ICT-ISPC), P105, DOI 10.1109/ICT-ISPC.2016.7519247
  • [7] Alotaibi A., 2017, Journal of Information Security, V8, P203
  • [8] Alphand O, 2018, IEEE WCNC
  • [9] An Attribute-Based Encryption Scheme to Secure Fog Communications
    Alrawais, Arwa
    Alhothaily, Abdulrahman
    Hu, Chunqiang
    Xing, Xiaoshuang
    Cheng, Xiuzhen
    [J]. IEEE ACCESS, 2017, 5 : 9131 - 9138
  • [10] Fog Computing for the Internet of Things: Security and Privacy Issues
    Alrawais, Arwa
    Alhothaily, Abdulrahman
    Hu, Chunqiang
    Cheng, Xiuzhen
    [J]. IEEE INTERNET COMPUTING, 2017, 21 (02) : 34 - 42