Local absorbing boundaries of elliptical shape for scalar wave propagation in a half-plane

被引:8
|
作者
Lee, S
Kallivokas, LF
机构
[1] Univ Texas, Dept Civil Engn, Austin, TX 78712 USA
[2] Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
absorbing boundary conditions; half-space or half-plane; scalar wave equation; elliptical shape; time-domain; frequency-domain;
D O I
10.1016/j.finel.2004.02.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We have recently discussed the performance of local second-order two-dimensional absorbing boundary conditions of elliptical shape for scattering and radiation problems involving sound-hard obstacles embedded in a full-plane. In this article, using the method of images, we extend the applicability of elliptically shaped truncation boundaries to semi-infinite acoustic media. For problems in either the time- or the frequency-domains, involving, near-surface structures of elongated cross-sections, we show that significant computational savings are attainable when compared against semi-circular truncation geometries. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:2063 / 2084
页数:22
相关论文
共 50 条
  • [1] Local absorbing boundaries of elliptical shape for scalar waves
    Kallivokas, LF
    Lee, S
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (45-47) : 4979 - 5015
  • [2] WAVE PROPAGATION IN THE ANISOTROPIC INHOMOGENEOUS HALF-PLANE
    Rangelov, Tsviatko
    Dineva, Petia
    COUPLED SITE AND SOIL-STRUCTURE INTERACTION EFFECTS WITH APPLICATION TO SEISMIC RISK MITIGATION, 2009, : 43 - +
  • [3] Ellipsoidally-shaped local absorbing boundaries for three-dimensional scalar wave propagation
    L. F. Kallivokas
    S. Lee
    Computational Mechanics, 2004, 35 : 11 - 23
  • [4] Ellipsoidally-shaped local absorbing boundaries for three-dimensional scalar wave propagation
    Kallivokas, LF
    Lee, S
    COMPUTATIONAL MECHANICS, 2004, 35 (01) : 11 - 23
  • [5] BEM for seismic wave propagation in inhomogeneous in depth half-plane
    Fontara, I-K.
    Parvanova, S.
    Wuttke, F.
    Rangelov, T.
    Dineva, P.
    EURODYN 2014: IX INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, 2014, : 599 - 606
  • [6] Transient analysis of wave propagation problems by half-plane BEM
    Panji, M.
    Kamalian, M.
    Marnani, J. Asgari
    Jafari, M. K.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2013, 194 (03) : 1849 - 1865
  • [7] DIFFRACTION OF A CYLINDRICAL ACOUSTIC-WAVE BY AN ABSORBING HALF-PLANE IN A MOVING FLUID
    ASGHAR, S
    AYUB, M
    AHMAD, B
    QADIR, A
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1991, 89 (05): : 2080 - 2083
  • [8] A GENERAL SCALAR SOLUTION FOR THE HALF-PLANE PROBLEM
    GANCI, S
    JOURNAL OF MODERN OPTICS, 1995, 42 (08) : 1707 - 1711
  • [9] POINT-SOURCE DIFFRACTION BY AN ABSORBING HALF-PLANE
    ASGHAR, S
    AHMAD, B
    AYUB, M
    IMA JOURNAL OF APPLIED MATHEMATICS, 1991, 46 (03) : 217 - 224
  • [10] Point-source diffraction by an absorbing half-plane
    Asghar, S.
    Ahmad, Bashir
    Ayub, M.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 1991, 46 (03): : 217 - 224