Dielectric properties of amorphous phase-change materials

被引:60
作者
Chen, C. [1 ]
Jost, P. [1 ]
Volker, H. [1 ]
Kaminski, M. [1 ]
Wirtssohn, M. [1 ]
Engelmann, U. [1 ]
Krueger, K. [1 ]
Schlich, F. [1 ]
Schlockermann, C. [1 ]
Lobo, R. P. S. M. [4 ]
Wuttig, M. [1 ,2 ,3 ,5 ]
机构
[1] Rhein Westfal TH Aachen, I Phys Inst IA, D-52056 Aachen, Germany
[2] Forschungszentrum Julich, JARA FIT, JARA Inst Green IT, D-52056 Aachen, Germany
[3] Rhein Westfal TH Aachen, D-52056 Aachen, Germany
[4] PSL Res Univ, CNRS, ESPCI Paris, LPEM, 10 Rue Vauquelin, F-75005 Paris, France
[5] Univ Paris 06, Sorbonne Univ, F-75005 Paris, France
关键词
AC CONDUCTIVITY; MEMORY; STORAGE;
D O I
10.1103/PhysRevB.95.094111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dielectric function of several amorphous phase-change materials has been determined by employing a combination of impedance spectroscopy (9 kHz-3 GHz) and optical spectroscopy from the far-(20 cm(-1), 0.6 THz) to the near- (12 000 cm(-1), 360 THz) infrared, i.e., from the DC limit to the first interband transition. While phase-change materials undergo a change from covalent bonding to resonant bonding on crystallization, the amorphous and crystalline phases of ordinary chalcogenide semiconductors are both governed by virtually the same covalent bonds. Here, we study the dielectric properties of amorphous phase-change materials on the pseudobinary line between GeTe and Sb2Te3. These data provide important insights into the charge transport and the nature of bonding in amorphous phase-change materials. No frequency dependence of permittivity and conductivity is discernible in the impedance spectroscopy measurements. Consequently, there are no dielectric relaxations. The frequency-independent conductivity is in line with charge transport via extended states. The static dielectric constant significantly exceeds the optical dielectric constant. This observation is corroborated by transmittance measurements in the far infrared, which show optical phonons. From the intensity of these phonon modes, a large Born effective charge is derived. Nevertheless, it is known that crystalline phase-change materials such as GeTe possess even significantly larger Born effective charges. Crystallization is hence accompanied by a huge increase in the Born effective charge, which reveals a significant change of bonding upon crystallization. In addition, a clear stoichiometry trend in the static dielectric constant along the pseudobinary line between GeTe and Sb2Te3 has been identified.
引用
收藏
页数:9
相关论文
共 51 条
[11]   AC conductivity and dielectric properties of Sb2Te3 thin films [J].
Farid, AM ;
Atyia, HE ;
Hegab, NA .
VACUUM, 2005, 80 (04) :284-294
[12]   Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements [J].
Friedrich, I ;
Weidenhof, V ;
Njoroge, W ;
Franz, P ;
Wuttig, M .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :4130-4134
[13]   Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe [J].
Gabardi, S. ;
Caravati, S. ;
Sosso, G. C. ;
Behler, J. ;
Bernasconi, M. .
PHYSICAL REVIEW B, 2015, 92 (05)
[14]   Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory [J].
Gonze, X ;
Lee, C .
PHYSICAL REVIEW B, 1997, 55 (16) :10355-10368
[15]  
Gray H. B., 1965, ELECTRONS CHEMICAL B, P72
[16]   Ultra-high-density phase-change storage and memory [J].
Hamann, HF ;
O'Boyle, M ;
Martin, YC ;
Rooks, M ;
Wickramasinghe, K .
NATURE MATERIALS, 2006, 5 (05) :383-387
[17]   Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials [J].
Hegedus, J. ;
Elliott, S. R. .
NATURE MATERIALS, 2008, 7 (05) :399-405
[18]   Bonding origin of optical contrast in phase-change memory materials [J].
Huang, B. ;
Robertson, J. .
PHYSICAL REVIEW B, 2010, 81 (08)
[19]   A study of phase transition behaviors of chalcogenide layers using in situ alternative-current impedance spectroscopy [J].
Huang, Yin-Hsien ;
Huang, Yu-Jen ;
Hsieh, Tsung-Eong .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (12)
[20]   Prospective of Semiconductor Memory Devices: from Memory System to Materials [J].
Hwang, Cheol Seong .
ADVANCED ELECTRONIC MATERIALS, 2015, 1 (06)