Understanding the Origin of Li2MnO3 Activation in Li-Rich Cathode Materials for Lithium-Ion Batteries

被引:169
作者
Ye, Delai [1 ,2 ]
Zeng, Guang [3 ]
Nogita, Kazuhiro [3 ]
Ozawa, Kiyoshi [4 ]
Hankel, Marlies [5 ]
Searles, Debra J. [5 ,6 ]
Wang, Lianzhou [1 ,2 ]
机构
[1] Univ Queensland, Sch Chem Engn, Nanomat Ctr, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Mech & Min Engn, Nihon Super Ctr Mfg Elect Mat, Brisbane, Qld 4072, Australia
[4] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[5] Univ Queensland, AIBN Ctr Theoret & Computat Mol Sci, Brisbane, Qld 4072, Australia
[6] Univ Queensland, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
关键词
high energy density batteries; in situ characterization; Li-rich cathode materials; phase activation; reaction kinetics; NICKEL MANGANESE OXIDES; X-RAY-DIFFRACTION; ELECTRODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; STRUCTURAL TRANSFORMATION; ANOMALOUS CAPACITY; MN; SURFACE; MECHANISM; EVOLUTION;
D O I
10.1002/adfm.201503276
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li-rich layered cathode materials have been considered as a family of promising high-energy density cathode materials for next generation lithium-ion batteries (LIBs). However, although activation of the Li2MnO3 phase is known to play an essential role in providing superior capacity, the mechanism of activation of the Li2MnO3 phase in Li-rich cathode materials is still not fully understood. In this work, an interesting Li-rich cathode material Li1.87Mn0.94Ni0.19O3 is reported where the Li2MnO3 phase activation process can be effectively controlled due to the relatively low level of Ni doping. Such a unique feature offers the possibility of investigating the detailed activation mechanism by examining the intermediate states and phases of the Li2MnO3 during the controlled activation process. Combining powerful synchrotron in situ X-ray diffraction analysis and observations using advanced scanning transmission electron microscopy equipped with a high angle annular dark field detector, it has been revealed that the subreaction of O-2 generation may feature a much faster kinetics than the transition metal diffusion during the Li2MnO3 activation process, indicating that the latter plays a crucial role in determining the Li2MnO3 activation rate and leading to the unusual stepwise capacity increase over charging cycles.
引用
收藏
页码:7488 / 7496
页数:9
相关论文
共 47 条
[1]   XPS Investigation of Surface Reactivity of Electrode Materials: Effect of the Transition Metal [J].
Andreu, N. ;
Flahaut, D. ;
Dedryvere, R. ;
Minvielle, M. ;
Martinez, H. ;
Gonbeau, D. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (12) :6629-6636
[2]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[3]   Local Structure of Layered Oxide Electrode Materials for Lithium-Ion Batteries [J].
Bareno, J. ;
Lei, C. H. ;
Wen, J. G. ;
Kang, S-H ;
Petrov, I. ;
Abraham, D. P. .
ADVANCED MATERIALS, 2010, 22 (10) :1122-1127
[4]   Reinvestigation of Li2MnO3 Structure: Electron Diffraction and High Resolution TEM [J].
Boulineau, A. ;
Croguennec, L. ;
Delmas, C. ;
Weill, F. .
CHEMISTRY OF MATERIALS, 2009, 21 (18) :4216-4222
[5]   Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the Initial Charge/Discharge Cycle Studied by Advanced Electron Microscopy [J].
Boulineau, Adrien ;
Simonin, Loic ;
Colin, Jean-Francois ;
Canevet, Emmanuel ;
Daniel, Lise ;
Patoux, Sebastien .
CHEMISTRY OF MATERIALS, 2012, 24 (18) :3558-3566
[6]   A simple electrochemical cell for in-situ fundamental structural analysis using synchrotron X-ray powder diffraction [J].
Brant, William R. ;
Schmid, Siegbert ;
Du, Guodong ;
Gu, Qinfen ;
Sharma, Neeraj .
JOURNAL OF POWER SOURCES, 2013, 244 :109-114
[7]   High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution [J].
Bréger, J ;
Jiang, M ;
Dupré, N ;
Meng, YS ;
Shao-Horn, Y ;
Ceder, G ;
Grey, CP .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (09) :2575-2585
[8]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[9]   Re-entrant Lithium Local Environments and Defect Driven Electrochemistry of Li- and Mn-Rich Li-Ion Battery Cathodes [J].
Dogan, Fulya ;
Long, Brandon R. ;
Croy, Jason R. ;
Gallagher, Kevin G. ;
Iddir, Hakim ;
Russell, John T. ;
Balasubramanian, Mahalingam ;
Key, Baris .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (06) :2328-2335
[10]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935