ON ISOMETRIES FOR CONVOLUTIONAL CODES

被引:5
作者
Gluesing-Luerssen, Heide [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
Convolutional codes; strong isometries; state space realizations; weight adjacency matrix; monomial equivalence; MacWilliams Equivalence Theorem; EQUIVALENCE; TRELLIS; SPACES;
D O I
10.3934/amc.2009.3.179
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we will discuss isometries and strong isometries for convolutional codes. Isometries are weight-preserving module isomorphisms whereas strong isometries are, in addition, degree-preserving. Special cases of these maps are certain types of monomial transformations. We will show a form of MacWilliams Equivalence Theorem, that is, each isometry between convolutional codes is given by a monomial transformation. Examples show that strong isometries cannot be characterized this way, but special attention paid to the weight adjacency matrices allows for further descriptions. Various distance parameters appearing in the literature on convolutional codes will be discussed as well.
引用
收藏
页码:179 / 203
页数:25
相关论文
共 50 条
  • [1] A MacWilliams Identity for Convolutional Codes: The General Case
    Gluesing-Luerssen, Heide
    Schneider, Gert
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) : 2920 - 2930
  • [2] State space realizations and monomial equivalence for convolutional codes
    Gluesing-Luerssen, Heide
    Schneider, Gert
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 425 (2-3) : 518 - 533
  • [3] On the MacWilliains identity for convolutional codes
    Gluesing-Luerssen, Heide
    Schneider, Gert
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (04) : 1536 - 1550
  • [4] Convolutional codes over groups
    Loeliger, HA
    Mittelholzer, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) : 1660 - 1686
  • [5] Recursive Convolutional Codes for Time-Invariant LDPC Convolutional Codes
    Roy, Eric
    Cardinal, Christian
    Haccoun, David
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 834 - 838
  • [6] Group convolutional codes
    Estrada, Sergio
    Garcia-Rozas, J. R.
    Peralta, Justo
    Sanchez-Garcia, E.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (01) : 83 - 94
  • [7] BCH convolutional codes
    Rosenthal, J
    York, EV
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) : 1833 - 1844
  • [8] Multidimensional convolutional codes
    Kitchens, B
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2002, 15 (03) : 367 - 381
  • [9] Classification of convolutional codes
    Munoz Porras, Jose Maria
    Iglesias Curto, Jose Ignacio
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (10) : 2701 - 2725
  • [10] On behaviors and convolutional codes
    Rosenthal, J
    Schumacher, JM
    York, EV
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) : 1881 - 1891