Evolution families and the Loewner equation II: complex hyperbolic manifolds

被引:62
作者
Bracci, Filippo [1 ]
Contreras, Manuel D. [2 ]
Diaz-Madrigal, Santiago [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[2] Univ Seville, Escuela Tecn Super Ingn, Dept Matemat Aplicada 2, Seville 41092, Spain
关键词
HOLOMORPHIC MAPS;
D O I
10.1007/s00208-009-0340-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that evolution families on complex complete hyperbolic manifolds are in one to one correspondence with certain semicomplete non-autonomous holomorphic vector fields, providing the solution to a very general Loewner type differential equation on manifolds.
引用
收藏
页码:947 / 962
页数:16
相关论文
共 16 条
[1]   THE INFINITESIMAL GENERATORS OF SEMIGROUPS OF HOLOMORPHIC MAPS [J].
ABATE, M .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1992, 161 :167-180
[2]  
Abate M., 1989, Iteration Theory of Holomorphic Maps on Taut Manifolds. Research and Lecture Notes in Mathematics. Complex Analysis and Geometry
[3]  
BRACCI F, 2009, J EUR MATH IN PRESS
[4]   Evolution families and the Loewner equation I: the unit disc [J].
Bracci, Filippo ;
Contreras, Manuel D. ;
Diaz-Madrigal, Santiago .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 672 :1-37
[5]  
Coddington E., 1955, THEORY ORDINARY DIFF
[6]  
DUREN P, 1986, COMPLEX ANAL THEORY, V5, P323
[7]  
Federer Herbert, 1969, GEOMETRIC MEASURE TH
[8]   Loewner chains and parametric representation in several complex variables [J].
Graham, I ;
Kohr, G ;
Kohr, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (02) :425-438
[9]  
Graham I., 2003, Monographs and Textbooks in Pure and Applied Mathematics, V255
[10]  
GRAHAM I, 2007, SPIRALLIKE MAPPINGS