Familial Alzheimer's Disease Mutations within the Amyloid Precursor Protein Alter the Aggregation and Conformation of the Amyloid-β Peptide

被引:112
|
作者
Hatami, Asa [1 ,2 ]
Monjazeb, Sanaz [1 ]
Milton, Saskia [1 ]
Glabe, Charles G. [1 ,3 ,4 ]
机构
[1] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA
[2] UCLA, David Geffen Sch Med, Dept Neurol, Los Angeles, CA 90095 USA
[3] King Abdulaziz Univ, King Fahd Med Res Ctr, Dept Biochem, Fac Sci, Jeddah 23218, Saudi Arabia
[4] King Abdulaziz Univ, King Fahd Med Res Ctr, Expt Biochem Unit, Jeddah 23218, Saudi Arabia
基金
美国国家卫生研究院;
关键词
aggregation; Alzheimer disease; amyloid- (A); monoclonal antibody; peptide conformation; SMOOTH-MUSCLE-CELLS; A-BETA; MONOCLONAL-ANTIBODIES; PROTOFIBRIL FORMATION; PRESENILIN MUTATIONS; CEREBRAL-HEMORRHAGE; THIOFLAVIN-T; TOTTORI D7N; ENGLISH H6R; ANGIOPATHY;
D O I
10.1074/jbc.M116.755264
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most cases of Alzheimer's disease (AD) are sporadic, but a small percentage of AD cases, called familial AD (FAD), are associated with mutations in presenilin 1, presenilin 2, or the amyloid precursor protein. Amyloid precursor protein mutations falling within the amyloid- (A) sequence lead to a wide range of disease phenotypes. There is increasing evidence that distinct amyloid structures distinguished by amyloid conformation-dependent monoclonal antibodies have similarly distinct roles in pathology. It is possible that this phenotypic diversity of FAD associated with mutations within the A sequence is due to differences in the conformations adopted by mutant A peptides, but the effects of FAD mutations on aggregation kinetics and conformational and morphological changes of the A peptide are poorly defined. To gain more insight into this possibility, we therefore investigated the effects of 11 FAD mutations on the aggregation kinetics of A, as well as its ability to form distinct conformations recognized by a panel of amyloid conformation-specific monoclonal antibodies. We found that most FAD mutations increased the rate of aggregation of A. The FAD mutations also led to the adoption of alternative amyloid conformations distinguished by monoclonal antibodies and resulted in the formation of distinct aggregate morphologies as determined by transmission electron microscopy. In addition, several of the mutant peptides displayed a large reduction in thioflavin T fluorescence, despite forming abundant fibrils indicating that thioflavin T is a probe of conformational polymorphisms rather than a reliable indicator of fibrillization. Taken together, these results indicate that FAD mutations falling within the A sequence lead to dramatic changes in aggregation kinetics and influence the ability of A to form immunologically and morphologically distinct amyloid structures.
引用
收藏
页码:3172 / 3185
页数:14
相关论文
共 50 条
  • [21] Processing of Mutant β-Amyloid Precursor Protein and the Clinicopathological Features of Familial Alzheimer's Disease
    Bi, Christopher
    Bi, Stephanie
    Li, Bin
    AGING AND DISEASE, 2019, 10 (02): : 383 - 403
  • [22] Modelling Copper Binding to the Amyloid-β Peptide in Alzheimer's Disease
    Epa, V. Chandana
    Streltsov, Victor A.
    Varghese, Joseph N.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2010, 63 (03) : 345 - 349
  • [23] Amyloid-β-targeting immunotherapies for Alzheimer's disease
    Jin, Yi
    Du, Qiaofei
    Song, Mingjie
    Kang, Ruixin
    Zhou, Jianping
    Zhang, Huaqing
    Ding, Yang
    JOURNAL OF CONTROLLED RELEASE, 2024, 375 : 346 - 365
  • [24] Novel strategies for the fight of Alzheimer's disease targeting amyloid-β protein
    Xie, Yang
    Wang, Yan
    Jiang, Shangfei
    Xiang, Xiaohong
    Wang, Jianhua
    Ning, Linhong
    JOURNAL OF DRUG TARGETING, 2022, 30 (03) : 259 - 268
  • [25] Accumulated Amyloid-β Peptide and Hyperphosphorylated Tau Protein: Relationship and Links in Alzheimer's Disease
    Huang, Han-Chang
    Jiang, Zhao-Feng
    JOURNAL OF ALZHEIMERS DISEASE, 2009, 16 (01) : 15 - 27
  • [26] Restored degradation of the Alzheimer's amyloid-β peptide by targeting amyloid formation
    Crouch, Peter J.
    Tew, Deborah J.
    Du, Tai
    Nguyen, Diem Ngoc
    Caragounis, Aphrodite
    Filiz, Gulay
    Blake, Rachel E.
    Trounce, Ian A.
    Soon, Cynthia P. W.
    Laughton, Katrina
    Perez, Keyla A.
    Li, Qiao-Xin
    Cherny, Robert A.
    Masters, Colin L.
    Barnham, Kevin J.
    White, Anthony R.
    JOURNAL OF NEUROCHEMISTRY, 2009, 108 (05) : 1198 - 1207
  • [27] The Amyloid-β Pathway in Alzheimer's Disease
    Hampel, Harald
    Hardy, John
    Blennow, Kaj
    Chen, Christopher
    Perry, George
    Kim, Seung Hyun
    Villemagne, Victor L.
    Aisen, Paul
    Vendruscolo, Michele
    Iwatsubo, Takeshi
    Masters, Colin L.
    Cho, Min
    Lannfelt, Lars
    Cummings, Jeffrey L.
    Vergallo, Andrea
    MOLECULAR PSYCHIATRY, 2021, 26 (10) : 5481 - 5503
  • [28] Effects of presenilin-1 familial Alzheimer's disease mutations on γ-secretase activation for cleavage of amyloid precursor protein
    Do, Hung N.
    Devkota, Sujan
    Bhattarai, Apurba
    Wolfe, Michael S.
    Miao, Yinglong
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [29] Amyloid precursor protein and mitochondrial dysfunction in Alzheimer's disease
    Anandatheerthavarada, Hindupur K.
    Devi, Latha
    NEUROSCIENTIST, 2007, 13 (06) : 626 - 638
  • [30] Impact of Amyloid-β on Platelet Mitochondrial Function and Platelet-Mediated Amyloid Aggregation in Alzheimer's Disease
    Donner, Lili
    Feige, Tobias
    Freiburg, Carolin
    Toska, Laura Mara
    Reichert, Andreas S.
    Chatterjee, Madhumita
    Elvers, Margitta
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (17)