When Is a Complete-Case Approach to Missing Data Valid? The Importance of Effect-Measure Modification

被引:53
|
作者
Ross, Rachael K. [1 ]
Breskin, Alexander [1 ,2 ]
Westreich, Daniel [1 ]
机构
[1] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, CB 7435,McGavran Greenberg Hall, Chapel Hill, NC 27599 USA
[2] NoviSci, Durham, NC USA
关键词
complete-case analysis; conditional estimates; epidemiologic methods; heterogeneity; marginal estimates; missing data; risk differences; SELECTION BIAS; MULTIPLE IMPUTATION; CAUSAL DIAGRAMS; COVARIATE DATA; REGRESSION; EFFICIENCY; INFERENCE;
D O I
10.1093/aje/kwaa124
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
When estimating causal effects, careful handling of missing data is needed to avoid bias. Complete-case analysis is commonly used in epidemiologic analyses. Previous work has shown that covariate-stratified effect estimates from complete-case analysis are unbiased when missingness is independent of the outcome conditional on the exposure and covariates. Here, we assess the bias of complete-case analysis for adjusted marginal effects when confounding is present under various causal structures of missing data. We show that estimation of the marginal risk difference requires an unbiased estimate of the unconditional joint distribution of confounders and any other covariates required for conditional independence of missingness and outcome. The dependence of missing data on these covariates must be considered to obtain a valid estimate of the covariate distribution. If none of these covariates are effect-measure modifiers on the absolute scale, however, the marginal risk difference will equal the stratified risk differences and the complete-case analysis will be unbiased when the stratified effect estimates are unbiased. Estimation of unbiased marginal effects in complete-case analysis therefore requires close consideration of causal structure and effect-measure modification.
引用
收藏
页码:1583 / 1589
页数:7
相关论文
共 7 条
  • [1] Comparison of Multiple Imputation and Complete-Case in a Simulated Longitudinal Data with Missing Covariate
    Chin, Wan Yoke
    Khalid, Zarina Mohd
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 918 - 922
  • [2] Estimation Bias in Complete-Case Analysis in Crossover Studies with Missing Data
    Liu, Fang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (05) : 812 - 827
  • [3] A Comparison of Three Popular Methods for Handling Missing Data: Complete-Case Analysis, Inverse Probability Weighting, and Multiple Imputation
    Little, Roderick J.
    Carpenter, James R.
    Lee, Katherine J.
    SOCIOLOGICAL METHODS & RESEARCH, 2024, 53 (03) : 1105 - 1135
  • [4] Doubly robust testing and estimation of model-adjusted effect-measure modification with complex survey data
    Zheng, Hao W.
    Brumback, Babette A.
    Lu, Xiaomin
    Bouldin, Erin D.
    Cannell, Michael B.
    Andresen, Elena M.
    STATISTICS IN MEDICINE, 2013, 32 (04) : 673 - 684
  • [5] Bias due to missing exposure data using complete-case analysis in the proportional hazards regression model
    Demissie, S
    LaValley, MP
    Horton, NJ
    Glynn, RJ
    Cupples, LA
    STATISTICS IN MEDICINE, 2003, 22 (04) : 545 - 557
  • [6] Handling of missing component information for common composite score outcomes used in axial spondyloarthritis research when complete-case analysis is unbiased
    Polysopoulos, Christos
    Georgiadis, Stylianos
    Ornbjerg, Lykke Midtboll
    Scherer, Almut
    Di Giuseppe, Daniela
    Hetland, Merete Lund
    Nissen, Michael John
    Jones, Gareth T.
    Glintborg, Bente
    Loft, Anne Gitte
    Wallman, Johan Karlsson
    Pavelka, Karel
    Zavada, Jakub
    Yazici, Ayten
    Santos, Maria Jose
    Ciurea, Adrian
    Moller, Burkhard
    Michelsen, Brigitte
    Mielnik, Pawel
    Huhtakangas, Johanna
    Relas, Heikki
    Pirkmajer, Katja Perdan
    Rotar, Ziga
    Macdonald, Ross
    Gudbjornsson, Bjorn
    van der Horst-bruinsma, Irene
    van de Sande, Marleen
    Riek, Myriam
    BMC MEDICAL RESEARCH METHODOLOGY, 2025, 25 (01)
  • [7] Testing and Estimating Model-Adjusted Effect-Measure Modification Using Marginal Structural Models and Complex Survey Data
    Brumback, Babette A.
    Bouldin, Erin D.
    Zheng, Hao W.
    Cannell, Michael B.
    Andresen, Elena M.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 172 (09) : 1085 - 1091