A genome-wide scan for selection signatures in Nellore cattle

被引:17
|
作者
Somavilla, A. L. [1 ]
Sonstegard, T. S. [2 ]
Higa, R. H. [3 ]
Rosa, A. N. [4 ]
Siqueira, F. [4 ]
Silva, L. O. C. [4 ]
Torres Junior, R. A. A. [4 ]
Coutinho, L. L. [5 ,7 ]
Mudadu, M. A. [6 ]
Alencar, M. M. [6 ,7 ]
Regitano, L. C. A. [6 ,7 ]
机构
[1] UNESP, FCAV, Programa Posgrad Genet & Melhoramento Anim, Jaboticabal, Brazil
[2] USDA ARS, Bovine Funct Genom Lab, ANRI, Beltsville, MD USA
[3] Embrapa Informat Agr, Campinas, SP, Brazil
[4] Embrapa Gado Corte, Campo Grande, Brazil
[5] Univ Sao Paulo, Escola Super Agr Luiz de Queiroz Esalq, Piracicaba, Brazil
[6] Embrapa Pecuaria Sudeste, Sao Carlos, SP, Brazil
[7] CNPq, Brasilia, DF, Brazil
关键词
beef cattle; Bos indicus; genotyping; linkage disequilibrium; relative extended haplotype homozygosity; single nucleotide polymorphisms; LINKAGE DISEQUILIBRIUM; ASSOCIATION; GROWTH; GENE; TRAITS; EXPRESSION; MARKERS; IDENTIFICATION; POLYMORPHISMS; PROFILES;
D O I
10.1111/age.12210
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Brazilian Nellore cattle (Bos indicus) have been selected for growth traits for over more than four decades. In recent years, reproductive and meat quality traits have become more important because of increasing consumption, exports and consumer demand. The identification of genome regions altered by artificial selection can potentially permit a better understanding of the biology of specific phenotypes that are useful for the development of tools designed to increase selection efficiency. Therefore, the aims of this study were to detect evidence of recent selection signatures in Nellore cattle using extended haplotype homozygosity methodology and BovineHD marker genotypes (>777000 single nucleotide polymorphisms) as well as to identify corresponding genes underlying these signals. Thirty-one significant regions (P<0.0001) of possible recent selection signatures were detected, and 19 of these overlapped quantitative trait loci related to reproductive traits, growth, feed efficiency, meat quality, fatty acid profiles and immunity. In addition, 545 genes were identified in regions harboring selection signatures. Within this group, 58 genes were associated with growth, muscle and adipose tissue metabolism, reproductive traits or the immune system. Using relative extended haplotype homozygosity to analyze high-density single nucleotide polymorphism marker data allowed for the identification of regions potentially under artificial selection pressure in the Nellore genome, which might be used to better understand autozygosity and the effects of selection on the Nellore genome.
引用
收藏
页码:771 / 781
页数:11
相关论文
共 50 条
  • [31] Genome-wide association and functional annotation analysis for the calving interval in Nellore cattle
    Dias, Mayra Silva
    Pedrosa, Victor Breno
    da Cruz, Valdecy Aparecida Rocha
    Silva, Marcio Ribeiro
    Pinto, Luis Fernando Batista
    THERIOGENOLOGY, 2024, 218 : 214 - 222
  • [32] Weighted single-step genome-wide association study and pathway analyses for feed efficiency traits in Nellore cattle
    Brunes, Ludmilla C.
    Baldi, Fernando
    Lopes, Fernando B.
    Lobo, Raysildo B.
    Espigolan, Rafael
    Costa, Marcos F. O.
    Stafuzza, Nedenia B.
    Magnabosco, Claudio U.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2021, 138 (01) : 23 - 44
  • [33] A genome-wide scan to identify signatures of selection in two Iranian indigenous chicken ecotypes
    Mahdabi, Elaheh Rostamzadeh
    Esmailizadeh, Ali
    Mehrgardi, Ahmad Ayatollahi
    Fozi, Masood Asadi
    GENETICS SELECTION EVOLUTION, 2021, 53 (01)
  • [34] A genome-wide scan for selection signatures in Yorkshire and Landrace pigs based on sequencing data
    Wang, Zhen
    Chen, Qiang
    Yang, Yumei
    Yang, Hongjie
    He, Pengfei
    Zhang, Zhe
    Chen, Zhenliang
    Liao, Rongrong
    Tu, Yingying
    Zhang, Xiangzhe
    Wang, Qishan
    Pan, Yuchun
    ANIMAL GENETICS, 2014, 45 (06) : 808 - 816
  • [35] A genome-wide scan to identify signatures of selection in Lueyang black-bone chicken
    Xue, Zhen
    Wang, Ling
    Tian, Yingmin
    Yang, Yufei
    Li, Pan
    Yang, Ge
    Lu, Hongzhao
    Wang, Shanshan
    Zeng, Wenxian
    Zhang, Tao
    POULTRY SCIENCE, 2023, 102 (07)
  • [36] Whole Genome Resequencing of Heugu (Korean Black Cattle) for the Genome-Wide SNP Discovery
    Choi, Jung-Woo
    Chung, Won-Hyong
    Lee, Kyung-Tai
    Choi, Jae-Won
    Jung, Kyoung-Sub
    Cho, Yongmin
    Kim, Namshin
    Kim, Tae-Hun
    KOREAN JOURNAL FOR FOOD SCIENCE OF ANIMAL RESOURCES, 2013, 33 (06) : 715 - 722
  • [37] Detection of Candidate Genes Associated with Fecundity through Genome-Wide Selection Signatures of Katahdin Ewes
    Sanchez-Ramos, Reyna
    Trujano-Chavez, Mitzilin Zuleica
    Gallegos-Sanchez, Jaime
    Becerril-Perez, Carlos Miguel
    Cadena-Villegas, Said
    Cortez-Romero, Cesar
    ANIMALS, 2023, 13 (02):
  • [38] Genome-wide search for signatures of selection in three major Brazilian locally adapted sheep breeds
    de Simoni Gouveia, Joao Jose
    Paiva, Samuel Rezende
    McManus, Concepta M.
    Caetano, Alexandre Rodrigues
    Kijas, James W.
    Faco, Olivardo
    Azevedo, Hymerson Costa
    de Araujo, Adriana Mello
    Hoff de Souza, Carlos Jose
    Yamagishi, Michel Eduardo B.
    Souza Carneiro, Paulo Luiz
    Braga Lobo, Raimundo Nonato
    Pinheiro de Oliveira, Sonia Maria
    da Silva, Marcos Vinicius G. B.
    LIVESTOCK SCIENCE, 2017, 197 : 36 - 45
  • [39] Genome-Wide Association Study of Meat Quality Traits in Nellore Cattle
    Magalhaes, Ana F. B.
    de Camargo, Gregorio M. F.
    Fernandes Junior, Gerardo A.
    Gordo, Daniel G. M.
    Tonussi, Rafael L.
    Costa, Raphael B.
    Espigolan, Rafael
    Silva, Rafael M. de O.
    Bresolin, Tiago
    de Andrade, Willian B. F.
    Takada, Luciana
    Feitosa, Fabieli L. B.
    Baldi, Fernando
    Carvalheiro, Roberto
    Chardulo, Luis A. L.
    de Albuquerque, Lucia G.
    PLOS ONE, 2016, 11 (06):
  • [40] Genome-wide analysis reveals genomic diversity and signatures of selection in Qinchuan beef cattle
    Yu, Hengwei
    Zhang, Ke
    Cheng, Gong
    Mei, Chugang
    Wang, Hongbao
    Zan, Linsen
    BMC GENOMICS, 2024, 25 (01):