Real-Time Semantic Segmentation With Fast Attention

被引:98
|
作者
Hu, Ping [1 ,2 ]
Perazzi, Federico [3 ]
Heilbron, Fabian Caba [4 ]
Wang, Oliver [4 ]
Lin, Zhe [4 ]
Saenko, Kate [1 ,2 ]
Sclaroff, Stan [1 ,2 ]
机构
[1] Boston Univ, Dept Comp Sci, 111 Cummington St, Boston, MA 02215 USA
[2] MIT IBM Watson AI Lab, Cambridge, MA 02142 USA
[3] Facebook, Menlo Pk, CA 94025 USA
[4] Adobe, San Jose, CA 95110 USA
基金
美国国家科学基金会;
关键词
Semantics; Real-time systems; Feature extraction; Computational modeling; Computational efficiency; Videos; Computer architecture; Semantic segmentation; real-time speed; fast attention;
D O I
10.1109/LRA.2020.3039744
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In deep CNN based models for semantic segmentation, high accuracy relies on rich spatial context (large receptive fields) and fine spatial details (high resolution), both of which incur high computational costs. In this letter, we propose a novel architecture that addresses both challenges and achieves state-of-the-art performance for semantic segmentation of high-resolution images and videos in real-time. The proposed architecture relies on our fast spatial attention, which is a simple yet efficient modification of the popular self-attention mechanism and captures the same rich spatial context at a small fraction of the computational cost, by changing the order of operations. Moreover, to efficiently process high-resolution input, we apply an additional spatial reduction to intermediate feature stages of the network with minimal loss in accuracy thanks to the use of the fast attention module to fuse features. We validate our method with a series of experiments, and show that results on multiple datasets demonstrate superior performance with better accuracy and speed compared to existing approaches for real-time semantic segmentation. On Cityscapes, our network achieves 74.4% mIoU at 72 FPS and 75.5% mIoU at 58 FPS on a single Titan X GPU, which is similar to 50% faster than the state-of-the-art while retaining the same accuracy.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 50 条
  • [31] Real-Time Semantic Segmentation of Remote Sensing Images Based on Bilateral Attention Refined Network
    Cai, Jiali
    Liu, Chunjuan
    Yan, Haowen
    Wu, Xiaosuo
    Lu, Wanzhen
    Wang, Xiaoyu
    Sang, Changlin
    IEEE ACCESS, 2021, 9 : 28349 - 28360
  • [32] Real-Time Semantic Segmentation Network Based on Regional Self-Attention
    Bao Hailong
    Wan Min
    Liu Zhongxian
    Qin Mian
    Cui Haoyu
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (08)
  • [33] SDDNet: Real-Time Crack Segmentation
    Choi, Wooram
    Cha, Young-Jin
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (09) : 8016 - 8025
  • [34] Feature extraction and enhancement for real-time semantic segmentation
    Tan, Sixiang
    Yang, Wenzhong
    Lin, JianZhuang
    Yu, Weijie
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (17)
  • [35] Lightweight Real-Time Semantic Segmentation Network With Efficient Transformer and CNN
    Xu, Guoan
    Li, Juncheng
    Gao, Guangwei
    Lu, Huimin
    Yang, Jian
    Yue, Dong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (12) : 15897 - 15906
  • [36] Parallel segmentation network for real-time semantic segmentation
    Chen, Guanke
    Li, Haibin
    Li, Yaqian
    Zhang, Wenming
    Song, Tao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [37] Real-Time Instance-Aware Segmentation and Semantic Mapping on Edge Devices
    Lu, Junjie
    Tian, Bailing
    Shen, Hongming
    Zhang, Xuewei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [38] A hybrid attention multi-scale fusion network for real-time semantic segmentation
    Ye, Baofeng
    Xue, Renzheng
    Wu, Qianlong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [39] Real-Time Semantic Segmentation of Point Clouds Based on an Attention Mechanism and a Sparse Tensor
    Wang, Fei
    Yang, Yujie
    Wu, Zhao
    Zhou, Jingchun
    Zhang, Weishi
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [40] DMANet: Dual-branch multiscale attention network for real-time semantic segmentation
    Dong, Yongsheng
    Mao, Chongchong
    Zheng, Lintao
    Wu, Qingtao
    NEUROCOMPUTING, 2025, 617