Real-Time Semantic Segmentation With Fast Attention

被引:98
|
作者
Hu, Ping [1 ,2 ]
Perazzi, Federico [3 ]
Heilbron, Fabian Caba [4 ]
Wang, Oliver [4 ]
Lin, Zhe [4 ]
Saenko, Kate [1 ,2 ]
Sclaroff, Stan [1 ,2 ]
机构
[1] Boston Univ, Dept Comp Sci, 111 Cummington St, Boston, MA 02215 USA
[2] MIT IBM Watson AI Lab, Cambridge, MA 02142 USA
[3] Facebook, Menlo Pk, CA 94025 USA
[4] Adobe, San Jose, CA 95110 USA
基金
美国国家科学基金会;
关键词
Semantics; Real-time systems; Feature extraction; Computational modeling; Computational efficiency; Videos; Computer architecture; Semantic segmentation; real-time speed; fast attention;
D O I
10.1109/LRA.2020.3039744
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In deep CNN based models for semantic segmentation, high accuracy relies on rich spatial context (large receptive fields) and fine spatial details (high resolution), both of which incur high computational costs. In this letter, we propose a novel architecture that addresses both challenges and achieves state-of-the-art performance for semantic segmentation of high-resolution images and videos in real-time. The proposed architecture relies on our fast spatial attention, which is a simple yet efficient modification of the popular self-attention mechanism and captures the same rich spatial context at a small fraction of the computational cost, by changing the order of operations. Moreover, to efficiently process high-resolution input, we apply an additional spatial reduction to intermediate feature stages of the network with minimal loss in accuracy thanks to the use of the fast attention module to fuse features. We validate our method with a series of experiments, and show that results on multiple datasets demonstrate superior performance with better accuracy and speed compared to existing approaches for real-time semantic segmentation. On Cityscapes, our network achieves 74.4% mIoU at 72 FPS and 75.5% mIoU at 58 FPS on a single Titan X GPU, which is similar to 50% faster than the state-of-the-art while retaining the same accuracy.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 50 条
  • [1] Dual Attention Dual-Resolution Networks for Real-Time Semantic Segmentation of Street Scenes
    Ye, Baofeng
    Xue, Renzheng
    IEEE ACCESS, 2025, 13 : 588 - 595
  • [2] RoboSeg: Real-Time Semantic Segmentation on Computationally Constrained Robots
    Yan, Qingqing
    Li, Shu
    Liu, Chengju
    Liu, Ming
    Chen, Qijun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (03): : 1567 - 1577
  • [3] Efficient real-time semantic segmentation: accelerating accuracy with fast non-local attention
    Lan, Tianye
    Dou, Furong
    Feng, Ziliang
    Zhang, Chengfang
    VISUAL COMPUTER, 2024, 40 (08) : 5783 - 5796
  • [4] Parallel Complement Network for Real-Time Semantic Segmentation of Road Scenes
    Lv, Qingxuan
    Sun, Xin
    Chen, Changrui
    Dong, Junyu
    Zhou, Huiyu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (05) : 4432 - 4444
  • [5] BiAttnNet: Bilateral Attention for Improving Real-Time Semantic Segmentation
    Li, Genling
    Li, Liang
    Zhang, Jiawan
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 46 - 50
  • [6] EMSFomer: Efficient Multi-Scale Transformer for Real-Time Semantic Segmentation
    Xia, Zhengyu
    Kim, Joohee
    IEEE ACCESS, 2025, 13 : 18239 - 18252
  • [7] Satellite Component Semantic Segmentation: Video Dataset and Real-Time Pyramid Attention and Decoupled Attention Network
    Shao, Yadong
    Wu, Aodi
    Li, Shengyang
    Shu, Leizheng
    Wan, Xue
    Shao, Yuanbin
    Huo, Junyan
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (06) : 7315 - 7333
  • [8] FASSD-Net: Fast and Accurate Real-Time Semantic Segmentation for Embedded Systems
    Rosas-Arias, Leonel
    Benitez-Garcia, Gibran
    Portillo-Portillo, Jose
    Olivares-Mercado, Jesus
    Sanchez-Perez, Gabriel
    Yanai, Keiji
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 14349 - 14360
  • [9] A Real-Time Road Scene Semantic Segmentation Model Based on Spatial Context Learning
    Xiao, Xiaomei
    Tang, Jialiang
    Lu, Xiaoyan
    Feng, Zhengyong
    Li, Yi
    IEEE ACCESS, 2024, 12 : 178495 - 178506
  • [10] A lightweight network with attention decoder for real-time semantic segmentation
    Wang, Kang
    Yang, Jinfu
    Yuan, Shuai
    Li, Mingai
    VISUAL COMPUTER, 2022, 38 (07) : 2329 - 2339